Page MenuHomec4science

main.cpp
No OneTemporary

File Metadata

Created
Mon, Nov 11, 12:48

main.cpp

/**
* @file main.cpp
* @Author Christoph Schaaefer, EPFL (christophernstrerne.schaefer@epfl.ch)
* @date October 2016
* @brief Benchmark for gradhalo function
*/
#include <iostream>
#include <iomanip>
#include <string.h>
#include <math.h>
#include <sys/time.h>
#include <fstream>
#include <sys/stat.h>
#include <unistd.h>
//
//#include <mm_malloc.h>
#include <omp.h>
//
//#include <cuda_runtime.h>
#include <structure_hpc.hpp>
//#include <cuda.h>
#include "timer.h"
#include "gradient.hpp"
#include "gradient2.hpp"
#include "chi_CPU.hpp"
#include "module_cosmodistances.hpp"
#include "module_readParameters.hpp"
#include "grid_gradient2_CPU.hpp"
#include "grid_amplif_CPU.hpp"
#include "module_writeFits.hpp"
#ifdef __WITH_GPU
#include "grid_gradient_GPU.cuh"
#include "grid_map_GPU.cuh"
#include "grid_gradient2_GPU.cuh"
//#include "gradient_GPU.cuh"
#endif
#ifdef __WITH_LENSTOOL
//#include "setup.hpp"
#warning "linking with libtool..."
#include<fonction.h>
#include<constant.h>
#include<dimension.h>
#include<structure.h>
#include<lt.h>
#include <stdlib.h>
//
//
struct g_mode M;
struct g_pot P[NPOTFILE];
struct g_pixel imFrame, wFrame, ps, PSF;
struct g_cube cubeFrame;
struct g_dyn Dy; // //TV
//
struct g_source S;
struct g_image I;
struct g_grille G;
struct g_msgrid H; // multi-scale grid
struct g_frame F;
struct g_large L;
struct g_cosmo C;
struct g_cline CL;
struct g_observ O;
struct pot lens[NLMAX];
struct pot lmin[NLMAX], lmax[NLMAX], prec[NLMAX];
struct g_cosmo clmin, clmax; /*cosmological limits*/
struct galaxie smin[NFMAX], smax[NFMAX]; // limits on source parameters
struct ipot ip;
struct MCarlo mc;
struct vfield vf;
struct vfield vfmin,vfmax; // limits on velocity field parameters
struct cline cl[NIMAX];
lensdata *lens_table;
//
int block[NLMAX][NPAMAX]; /*switch for the lens optimisation*/
int cblock[NPAMAX]; /*switch for the cosmological optimisation*/
int sblock[NFMAX][NPAMAX]; /*switch for the source parameters*/
int vfblock[NPAMAX]; /*switch for the velocity field parameters*/
double excu[NLMAX][NPAMAX];
double excd[NLMAX][NPAMAX];
/* supplments tableaux de valeurs pour fonctions g pour Einasto
* * Ce sont trois variables globales qu'on pourra utiliser dans toutes les fonctions du projet
* */
#define CMAX 20
#define LMAX 80
float Tab1[LMAX][CMAX];
float Tab2[LMAX][CMAX];
float Tab3[LMAX][CMAX];
int nrline, ntline, flagr, flagt;
long int narclet;
struct point gimage[NGGMAX][NGGMAX], gsource_global[NGGMAX][NGGMAX];
struct biline radial[NMAX], tangent[NMAX];
struct galaxie arclet[NAMAX], source[NFMAX], image[NFMAX][NIMAX];
struct galaxie cimage[NFMAX];
struct pointgal gianti[NPMAX][NIMAX];
struct point SC;
double elix;
double alpha_e;
double *v_xx;
double *v_yy;
double **map_p;
double **tmp_p;
double **map_axx;
double **map_ayy;
#endif
void
gradient_grid_GPU_sorted(type_t *grid_grad_x, type_t *grid_grad_y, const struct grid_param *frame, const struct Potential_SOA *lens, int Nlens, int nbgridcells);
//
//
int module_readCheckInput_readInput(int argc, char *argv[], std::string *outdir)
{
/// check if there is a correct number of arguments, and store the name of the input file in infile
char* infile;
struct stat file_stat;
// If we do not have 3 arguments, stop
if ( argc != 3 )
{
fprintf(stderr, "\nUnexpected number of arguments\n");
fprintf(stderr, "\nUSAGE:\n");
fprintf(stderr, "lenstool input_file output_directorypath [-n]\n\n");
exit(-1);
}
else if ( argc == 3 )
infile=argv[1];
std::ifstream ifile(infile,std::ifstream::in); // Open the file
int ts = (int) time (NULL);
char buffer[10];
std::stringstream ss;
ss << ts;
std::string trimstamp = ss.str();
//
//std::string outdir = argv[2];
*outdir = argv[2];
*outdir += "-";
*outdir += trimstamp;
std::cout << *outdir << std::endl;
// check whether the output directory already exists
if (stat(outdir->c_str(), &file_stat) < 0){
mkdir(outdir->c_str(), S_IRUSR | S_IWUSR | S_IXUSR | S_IRGRP | S_IWGRP | S_IXGRP | S_IROTH );
}
else {
printf("Error : Directory %s already exists. Specify a non existing directory.\n",argv[2]);
exit(-1);
}
// check whether the input file exists. If it could not be opened (ifile = 0), it does not exist
if(ifile){
ifile.close();
}
else{
printf("The file %s does not exist, please specify a valid file name\n",infile);
exit(-1);
}
return 0;
}
//
//
//
int main(int argc, char *argv[])
{
//
// Setting Up the problem
//
// This module function reads the terminal input when calling LENSTOOL and checks that it is correct
// Otherwise it exits LENSTOOL
//
char cwd[1024];
if (getcwd(cwd, sizeof(cwd)) != NULL)
fprintf(stdout, "Current working dir: %s\n", cwd);
//
std::string path;
module_readCheckInput_readInput(argc, argv, &path);
//
// This module function reads the cosmology parameters from the parameter file
// Input: struct cosmologicalparameters cosmology, parameter file
// Output: Initialized cosmology struct
cosmo_param cosmology; // Cosmology struct to store the cosmology data from the file
std::string inputFile = argv[1]; // Input file
module_readParameters_readCosmology(inputFile, cosmology);
//
// This module function reads the runmode paragraph and the number of sources, arclets, etc. in the parameter file.
// The runmode_param stores the information of what exactly the user wants to do with lenstool.
struct runmode_param runmode;
module_readParameters_readRunmode(inputFile, &runmode);
module_readParameters_debug_cosmology(runmode.debug, cosmology);
module_readParameters_debug_runmode(1, runmode);
//
//=== Declaring variables
//
struct grid_param frame;
struct galaxy images[runmode.nimagestot];
struct galaxy sources[runmode.nsets];
struct Potential lenses[runmode.nhalos + runmode.npotfile-1];
struct Potential_SOA lenses_SOA_table[NTYPES];
struct Potential_SOA lenses_SOA;
struct cline_param cline;
struct potfile_param potfile;
struct Potential potfilepotentials[runmode.npotfile];
struct potentialoptimization host_potentialoptimization[runmode.nhalos];
int nImagesSet[runmode.nsets]; // Contains the number of images in each set of images
//Bayesmap specific variables
type_t* bayespot;
int nparam, nvalues;
// This module function reads in the potential form and its parameters (e.g. NFW)
// Input: input file
// Output: Potentials and its parameters
module_readParameters_PotentialSOA_direct(inputFile, &lenses_SOA, runmode.nhalos, runmode.npotfile, cosmology);
module_readParameters_debug_potential_SOA(0, lenses_SOA, runmode.nhalos);
module_readParameters_limit(inputFile, host_potentialoptimization, runmode.nhalos );
module_readParameters_debug_limit(0, host_potentialoptimization[0]);
if (runmode.potfile == 1 )
{
module_readParameters_readpotfiles_param(inputFile, &potfile, cosmology);
module_readParameters_debug_potfileparam(1, &potfile);
module_readParameters_readpotfiles_SOA(&runmode, &cosmology,&potfile,&lenses_SOA);
module_readParameters_debug_potential_SOA(0, lenses_SOA, runmode.nhalos + runmode.npotfile);
}
// This module function reads in the grid form and its parameters
// Input: input file
// Output: grid and its parameters
//
module_readParameters_Grid(inputFile, &frame);
//std::cerr <<frame.xmin <<std::endl;
//
std::cout << "--------------------------" << std::endl << std::endl; fflush(stdout);
//
double t_lt, t_lt_total;
int turn = 0;
#if 1
//#ifdef __WITH_LENSTOOL
double **array; // contains the bayes.dat data
int nParam;
long int iVal, nVal; // size of array
char fname[50]; // <map><ival>.fits
char fname2[50]; // <map><ival>.fits
FILE *pFile;
int i;
double *index; // list of bayes.dat lines
int seed; // random seed
int tmp;
printf("Setting up lenstool using %d lenses...", runmode.nhalos+runmode.npotfile); fflush(stdout);
//convert_to_LT(&lenses_SOA, runmode.nhalos+runmode.npotfile);
// Read the .par file
init_grille(argv[1], 1);
// remove the .fits extension tcpo filename
if( M.imass ) M.massfile[strlen(M.massfile)-5]=0;
if( M.ishear ) M.shearfile[strlen(M.shearfile)-5]=0;
if( M.iampli ) M.amplifile[strlen(M.amplifile)-5]=0;
if( M.idpl )
{
M.dplxfile[strlen(M.dplxfile)-5]=0;
M.dplyfile[strlen(M.dplyfile)-5]=0;
}
if( M.pixel ) M.pixelfile[strlen(M.pixelfile)-5]=0;
if( M.iclean ) ps.pixfile[strlen(ps.pixfile)-5]=0;
// Read catalog of multiple images
readConstraints();
// Initialise the grid
if( G.pol != 0 )
gridp();
else
grid();
// Switch to silent mode
M.verbose = 0;
printf("ok\n");
std::cerr << " Read Bayes models" << std::endl;
// Read the bayes.dat file
array = readBayesModels(&nParam, &nVal);
if( array == NULL )
{
fprintf(stderr, "ERROR: bayes.dat file not found\n");
return -1;
}
// Create the ./tmp directory
i = system("mkdir -p tmp");
// Prepare the index list
index = (double *) malloc((unsigned) nVal*sizeof(double));
for( i = 0 ; i < nVal ; i++ ) index[i]=i;
seed = -2;
std::cerr << " Finished setting up" << std::endl;
//Defining maps
int ampli = 1;
t_lt_total = -myseconds();
// Loop over each line
for( i = 0; i < nVal && i < 2000; i++ )
{
// Randomly draw a line from index array
tmp = (int) floor(d_random(&seed) * (nVal - i));
iVal = index[i+tmp];
// and swap the indexes in the index list
index[i+tmp] = index[i];
// Set the lens parameters from <array>
setBayesModel( iVal, nVal, array );
if( M.imass != 0 )
{
sprintf( fname, "tmp/%s%ld.fits",M.massfile, iVal );
printf("INFO: Compute file %d/%ld : %s [CTRL-C to interrupt]\n",i+1, nVal,fname);
fflush(stdout);
pFile = fopen( fname, "r" );
if( pFile == NULL )
{
pFile = fopen( fname, "w");
fprintf( pFile, "busy\n" );
fclose(pFile);
t_lt = -myseconds();
g_mass( M.imass, M.nmass, M.zmass, S.zs, fname );
t_lt += myseconds();
std::cout << " Time = " << std::setprecision(15) << t_lt << " " << turn <<std::endl;
//std::cerr <<" para : " << M.zmass << " " << S.zs << " " << distcosmo2(M.zmass, S.zs) << distcosmo1(S.zs) << std::endl;
}
else
fclose(pFile);
}
if( M.iampli != 0 )
{
sprintf( fname, "tmp/%s%ld.fits","Amplif_", iVal );
printf("INFO: Compute file %d/%ld : %s [CTRL-C to interrupt]\n",i+1, nVal,fname);
fflush(stdout);
pFile = fopen( fname, "r" );
if( pFile == NULL )
{
pFile = fopen( fname, "w");
fprintf( pFile, "busy\n" );
fclose(pFile);
//std::cerr << runmode.amplif<< runmode.amplif_gridcells<< runmode.z_amplif << std::endl;
t_lt = -myseconds();
g_ampli( M.iampli, M.nampli, M.zampli, fname );
//g_ampli( runmode.amplif, runmode.amplif_gridcells, runmode.z_amplif, fname );
t_lt += myseconds();
//
turn += 1;
std::cout << " Time = " << std::setprecision(15) << t_lt << " " << turn <<std::endl;
}
else
fclose(pFile);
}
}
t_lt_total += myseconds();
#endif
#ifdef __WITH_GPU
double t_1, t_2;
struct matrix *grid_gradient2_cpu;
grid_gradient2_cpu = (struct matrix *) malloc((int) (runmode.amplif_gridcells) * (runmode.amplif_gridcells) * sizeof(struct matrix));
// Bayes Map specific functions
////read bayes lines
module_readParameters_preparebayes(nparam, nvalues);
std::cerr << nparam << "BLA" << nvalues << std::endl;
bayespot = (type_t *) malloc((int) (nparam) * (nvalues) * sizeof(type_t));
module_readParameters_bayesmodels(bayespot, nparam, nvalues);
////read bayes lines
//std::cerr << "BLA" << std::endl;
t_1 = -myseconds();
if (runmode.mass > 0){
//Allocation
type_t* mass_GPU = (type_t *) malloc((int) (runmode.mass_gridcells) * (runmode.mass_gridcells) * sizeof(type_t));
for(int ii = 0; ii < nvalues; ii++){
////calculate maps
std::cout << " GPU launching for map mass " << ii << std::endl;
t_2 = -myseconds();
////set bayes potential
module_readParameters_setbayesmapmodels(&runmode, &cosmology, host_potentialoptimization, &potfile, &lenses_SOA,bayespot,nparam, ii);
module_readParameters_debug_potential_SOA(0, lenses_SOA, runmode.nhalos+runmode.npotfile);
//Init
memset(mass_GPU, 0, (runmode.mass_gridcells) * (runmode.mass_gridcells) * sizeof(type_t));
//Choosing Function definition
map_gpu_function_t map_gpu_func;
map_gpu_func = select_map_function("mass",&runmode);
//calculating map using defined function
map_mass_grid_GPU(map_gpu_func,mass_GPU,&cosmology, &frame, &lenses_SOA, runmode.nhalos+ runmode.npotfile, runmode.mass_gridcells ,runmode.mass, runmode.z_mass, runmode.z_mass_s);
std::cerr <<" para : " << runmode.z_mass << " " << runmode.z_mass_s << std::endl;
//writing
//std::cerr << runmode.amplif_name << std::endl;
module_writeFits(path,runmode.mass_name,ii,mass_GPU,&runmode,&frame, runmode.ref_ra, runmode.ref_dec );
t_2 += myseconds();
std::cout << " Time " << std::setprecision(15) << t_2 << std::endl;
std::cerr << "**" << mass_GPU[0] << std::endl;
}
//std::cerr << "**" << ampli_GPU[0] << std::endl;
free(mass_GPU);
}
if (runmode.amplif > 0){
//Allocation
type_t* ampli_GPU = (type_t *) malloc((int) (runmode.amplif_gridcells) * (runmode.amplif_gridcells) * sizeof(type_t));
for(int ii = 0; ii < nvalues; ii++){
////calculate maps
std::cout << " GPU launching for map amplif " << ii << std::endl;
t_2 = -myseconds();
////set bayes potential
module_readParameters_setbayesmapmodels(&runmode, &cosmology, host_potentialoptimization, &potfile, &lenses_SOA,bayespot,nparam, ii);
module_readParameters_debug_potential_SOA(0, lenses_SOA, runmode.nhalos+runmode.npotfile);
//Init
memset(ampli_GPU, 0, (runmode.amplif_gridcells) * (runmode.amplif_gridcells) * sizeof(type_t));
//Choosing Function definition
map_gpu_function_t map_gpu_func;
map_gpu_func = select_map_function("ampli",&runmode);
//calculating map using defined function
map_grid_GPU(map_gpu_func,ampli_GPU,&cosmology, &frame, &lenses_SOA, runmode.nhalos+ runmode.npotfile, runmode.amplif_gridcells ,runmode.amplif, runmode.z_mass);
//writing
//std::cerr << runmode.amplif_name << std::endl;
module_writeFits(path,runmode.amplif_name,ii,ampli_GPU,&runmode,&frame, runmode.ref_ra, runmode.ref_dec );
t_2 += myseconds();
std::cout << " Time " << std::setprecision(15) << t_2 << std::endl;
std::cerr << "**" << ampli_GPU[0] << std::endl;
}
//std::cerr << "**" << ampli_GPU[0] << std::endl;
free(ampli_GPU);
}
//
t_1 += myseconds();
std::cout << "Lenstool Total Time " << std::setprecision(15) << t_lt_total << std::endl;
std::cout << "HPC Total Time " << std::setprecision(15) << t_1 << std::endl;
#endif
}

Event Timeline