Page MenuHomec4science

grid_map_ampli_GPU.cu
No OneTemporary

File Metadata

Created
Thu, Dec 12, 02:14

grid_map_ampli_GPU.cu

/**
Lenstool-HPC: HPC based massmodeling software and Lens-map generation
Copyright (C) 2017 Christoph Schaefer, EPFL (christophernstrerne.schaefer@epfl.ch), Gilles Fourestey (gilles.fourestey@epfl.ch)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
@brief: Function for amplification computation over a grid
*/
#include <fstream>
#include "grid_map_ampli_GPU.cuh"
#include "gradient2_GPU.cuh"
#include <structure_hpc.hpp>
#define BLOCK_SIZE_X 32
#define BLOCK_SIZE_Y 16
//#define ROT
#define _SHARED_MEM
#ifdef _SHARED_MEM
#define SHARED __shared__
#warning "shared memory"
extern __shared__ type_t shared[];
#else
#define SHARED
#endif
#define Nx 1
#define Ny 0
#define cudasafe
extern "C"
{
type_t myseconds();
}
__device__ struct ellipse formeli_ampli(type_t a, type_t b, type_t c);
//GPU mapping function declaration to change when figured out linkage problems
__global__ void amplif_1_grid_GPU(type_t *ampli,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t dos, type_t z,int nbgridcells);
__global__ void amplif_2_grid_GPU(type_t *ampli,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t dos, type_t z,int nbgridcells);
__global__ void amplif_3_grid_GPU(type_t *ampli,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t dos, type_t z,int nbgridcells);
__global__ void amplif_4_grid_GPU(type_t *ampli,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t dos, type_t z,int nbgridcells);
__global__ void amplif_5_grid_GPU(type_t *ampli,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t dos, type_t z,int nbgridcells);
__global__ void amplif_6_grid_GPU(type_t *ampli,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t dos, type_t z,int nbgridcells);
////Map function selection
map_gpu_function_t select_map_ampli_function(const struct runmode_param* runmode){
if(runmode->amplif == 1){
return &amplif_1_grid_CPU_GPU;
}
else if(runmode->amplif == 2){
return &amplif_2_grid_CPU_GPU;
}
else if(runmode->amplif == 3){
return &amplif_3_grid_CPU_GPU;
}
else if(runmode->amplif == 4){
return &amplif_4_grid_CPU_GPU;
}
else if(runmode->amplif == 5){
return &amplif_5_grid_CPU_GPU;
}
else if(runmode->amplif == 6){
return &amplif_6_grid_CPU_GPU;
}
else{
fprintf(stderr, "ERROR: Amplif mode %d not supported yet \n",runmode->amplif);
exit(-1);
}
return 0;
}
////General Map calculation
void map_grid_ampli_GPU(map_gpu_function_t mapfunction, type_t *map, const struct cosmo_param *cosmo, const struct grid_param *frame, const struct Potential_SOA *lens, int nhalos ,int nbgridcells,int mode_amp, type_t z )
{
type_t dx = (frame->xmax - frame->xmin)/(nbgridcells - 1);
type_t dy = (frame->ymax - frame->ymin)/(nbgridcells - 1);
//
map_grid_ampli_GPU(mapfunction,map,cosmo, frame, lens, nhalos,mode_amp,z, dx, dy, nbgridcells, nbgridcells, 0, 0);
}
//
void map_grid_ampli_GPU(map_gpu_function_t mapfunction, type_t *map,const struct cosmo_param *cosmo, const struct grid_param *frame, const struct Potential_SOA *lens, int nhalos, int mode_amp, type_t z, type_t dx, type_t dy, int nbgridcells_x, int nbgridcells_y, int istart, int jstart)
{
grid_param *frame_gpu;
Potential_SOA *lens_gpu,*lens_kernel;
int *type_gpu;
type_t *lens_x_gpu, *lens_y_gpu, *b0_gpu, *angle_gpu, *epot_gpu, *rcore_gpu, *rcut_gpu, *anglecos_gpu, *anglesin_gpu;
type_t *grid_grad2_a_gpu, *grid_grad2_b_gpu , *grid_grad2_c_gpu, *grid_grad2_d_gpu, *map_gpu;
type_t dl0s = module_cosmodistances_objectObject(lens->z[0], z, *cosmo);
type_t dos = module_cosmodistances_observerObject(z, *cosmo);
type_t dol = module_cosmodistances_observerObject(lens->z[0], *cosmo);
//select_ratio_function(std::string mode, const struct runmode_param* runmode, type_t dls, type_t ds)
lens_gpu = (Potential_SOA *) malloc(sizeof(Potential_SOA));
lens_gpu->type = (int *) malloc(sizeof(int));
// Allocate variables on the GPU
cudasafe(cudaMalloc( (void**)&(lens_kernel), sizeof(Potential_SOA)),"Gradient2gpu.cu : Alloc Potential_SOA: " );
cudasafe(cudaMalloc( (void**)&(type_gpu), nhalos*sizeof(int)),"Gradient2gpu.cu : Alloc type_gpu: " );
cudasafe(cudaMalloc( (void**)&(lens_x_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc x_gpu: " );
cudasafe(cudaMalloc( (void**)&(lens_y_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc y_gpu: " );
cudasafe(cudaMalloc( (void**)&(b0_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc b0_gpu: " );
cudasafe(cudaMalloc( (void**)&(angle_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc angle_gpu: " );
cudasafe(cudaMalloc( (void**)&(epot_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc epot_gpu: " );
cudasafe(cudaMalloc( (void**)&(rcore_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc rcore_gpu: " );
cudasafe(cudaMalloc( (void**)&(rcut_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc rcut_gpu: " );
cudasafe(cudaMalloc( (void**)&(anglecos_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc anglecos_gpu: " );
cudasafe(cudaMalloc( (void**)&(anglesin_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc anglesin_gpu: " );
cudasafe(cudaMalloc( (void**)&(frame_gpu), sizeof(grid_param)),"Gradient2gpu.cu : Alloc frame_gpu: " );
cudasafe(cudaMalloc( (void**)&(grid_grad2_a_gpu), (nbgridcells_x) * (nbgridcells_y) *sizeof(type_t)),"Gradient2gpu.cu : Alloc source_a_gpu: " );
cudasafe(cudaMalloc( (void**)&(grid_grad2_b_gpu), (nbgridcells_x) * (nbgridcells_y) *sizeof(type_t)),"Gradient2gpu.cu : Alloc source_b_gpu: " );
cudasafe(cudaMalloc( (void**)&(grid_grad2_c_gpu), (nbgridcells_x) * (nbgridcells_y) *sizeof(type_t)),"Gradient2gpu.cu : Alloc source_c_gpu: " );
cudasafe(cudaMalloc( (void**)&(grid_grad2_d_gpu), (nbgridcells_x) * (nbgridcells_y) *sizeof(type_t)),"Gradient2gpu.cu : Alloc source_d_gpu: " );
cudasafe(cudaMalloc( (void**)&(map_gpu), (nbgridcells_x) * (nbgridcells_y) *sizeof(type_t)),"Gradient2gpu.cu : Alloc map: " );
// Copy values to the GPU
//
cudasafe(cudaMemcpy(type_gpu,lens->type , nhalos*sizeof(int),cudaMemcpyHostToDevice ),"Gradient2gpu.cu : Copy type_gpu: " );
cudasafe(cudaMemcpy(lens_x_gpu,lens->position_x , nhalos*sizeof(type_t),cudaMemcpyHostToDevice ),"Gradient2gpu.cu : Copy x_gpu: " );
cudasafe(cudaMemcpy(lens_y_gpu,lens->position_y , nhalos*sizeof(type_t), cudaMemcpyHostToDevice),"Gradient2gpu.cu : Copy y_gpu: " );
cudasafe(cudaMemcpy(b0_gpu,lens->b0 , nhalos*sizeof(type_t), cudaMemcpyHostToDevice),"Gradient2pu.cu : Copy b0_gpu: " );
cudasafe(cudaMemcpy(angle_gpu,lens->ellipticity_angle , nhalos*sizeof(type_t), cudaMemcpyHostToDevice),"Gradient2gpu.cu : Copy angle_gpu: " );
cudasafe(cudaMemcpy(epot_gpu, lens->ellipticity_potential, nhalos*sizeof(type_t),cudaMemcpyHostToDevice ),"Gradient2gpu.cu : Copy epot_gpu: " );
cudasafe(cudaMemcpy(rcore_gpu, lens->rcore, nhalos*sizeof(type_t),cudaMemcpyHostToDevice ),"Gradient2gpu.cu : Copy rcore_gpu: " );
cudasafe(cudaMemcpy(rcut_gpu, lens->rcut, nhalos*sizeof(type_t), cudaMemcpyHostToDevice),"Gradient2gpu.cu : Copy rcut_gpu: " );
cudasafe(cudaMemcpy(anglecos_gpu, lens->anglecos, nhalos*sizeof(type_t),cudaMemcpyHostToDevice ),"Gradient2gpu.cu : Copy anglecos: " );
cudasafe(cudaMemcpy(anglesin_gpu, lens->anglesin, nhalos*sizeof(type_t), cudaMemcpyHostToDevice),"Gradient2gpu.cu : Copy anglesin: " );
cudasafe(cudaMemcpy(frame_gpu, frame, sizeof(grid_param), cudaMemcpyHostToDevice),"Gradient2gpu.cu : Copy fame_gpu: " );
//
lens_gpu->type = type_gpu;
lens_gpu->position_x = lens_x_gpu;
lens_gpu->position_y = lens_y_gpu;
lens_gpu->b0 = b0_gpu;
lens_gpu->ellipticity_angle = angle_gpu;
lens_gpu->ellipticity_potential = epot_gpu;
lens_gpu->rcore = rcore_gpu;
lens_gpu->rcut = rcut_gpu;
lens_gpu->anglecos = anglecos_gpu;
lens_gpu->anglesin = anglesin_gpu;
//
cudaMemcpy(lens_kernel, lens_gpu, sizeof(Potential_SOA), cudaMemcpyHostToDevice);
//
type_t time = -myseconds();
//
module_potentialDerivatives_totalGradient2_SOA_CPU_GPU(grid_grad2_a_gpu, grid_grad2_b_gpu, grid_grad2_c_gpu, grid_grad2_d_gpu, frame_gpu, lens_kernel, nhalos, dx, dy, nbgridcells_x, nbgridcells_y, istart, jstart);
//
mapfunction(map_gpu,grid_grad2_a_gpu, grid_grad2_b_gpu, grid_grad2_c_gpu, grid_grad2_d_gpu,dl0s,dos,dol,cosmo->h,z,nbgridcells_x,nbgridcells_y,frame);
//cudasafe(cudaGetLastError(), "module_potentialDerivative_totalGradient_SOA_CPU_GPU");
cudaDeviceSynchronize();
//
cudasafe(cudaMemcpy( map, map_gpu, (nbgridcells_x)*(nbgridcells_y)*sizeof(type_t), cudaMemcpyDeviceToHost )," --- Gradient2gpu.cu : Copy source_a_gpu: " );
//
time += myseconds();
std::cout << " kernel time = " << time << " s." << std::endl;
// Free GPU memory
cudaFree(lens_kernel);
cudaFree(type_gpu);
cudaFree(lens_x_gpu);
cudaFree(lens_y_gpu);
cudaFree(b0_gpu);
cudaFree(angle_gpu);
cudaFree(epot_gpu);
cudaFree(rcore_gpu);
cudaFree(rcut_gpu);
cudaFree(anglecos_gpu);
cudaFree(anglesin_gpu);
cudaFree(grid_grad2_a_gpu);
cudaFree(grid_grad2_b_gpu);
cudaFree(grid_grad2_c_gpu);
cudaFree(grid_grad2_d_gpu);
cudaFree(map_gpu);
}
#if 0
//allows for resizing of the source
void map_resizedgrid_GPU(map_gpu_function_t mapfunction, type_t *map,const struct cosmo_param *cosmo, const struct grid_param *frame, const struct Potential_SOA *lens, int nhalos, int mode_amp, type_t z, type_t dx, type_t dy, int nbgridcells_x, int nbgridcells_y, int istart, int jstart)
{
//Create resized frame information for source amplification and the like
grid_param resized_frame;
type_t resized_dx = (frame->xmax - frame->xmin) / 6.;
type_t resized_dy = (frame->ymax - frame->ymin) / 6.;
resized_frame.xmax = frame->xmax - resized_dx;
resized_frame.xmin = frame->xmin + resized_dx;
resized_frame.ymax = frame->ymax - resized_dy;
resized_frame.ymin = frame->xmin + resized_dy;
grid_param *frame_gpu;
Potential_SOA *lens_gpu,*lens_kernel;
int *type_gpu;
type_t *lens_x_gpu, *lens_y_gpu, *b0_gpu, *angle_gpu, *epot_gpu, *rcore_gpu, *rcut_gpu, *anglecos_gpu, *anglesin_gpu;
type_t *grid_grad2_a_gpu, *grid_grad2_b_gpu , *grid_grad2_c_gpu, *grid_grad2_d_gpu, *map_gpu;
type_t dl0s = module_cosmodistances_objectObject(lens->z[0], z, *cosmo);
type_t dos = module_cosmodistances_observerObject(z, *cosmo);
//select_ratio_function(std::string mode, const struct runmode_param* runmode, type_t dls, type_t ds)
lens_gpu = (Potential_SOA *) malloc(sizeof(Potential_SOA));
lens_gpu->type = (int *) malloc(sizeof(int));
// Allocate variables on the GPU
cudasafe(cudaMalloc( (void**)&(lens_kernel), sizeof(Potential_SOA)),"Gradient2gpu.cu : Alloc Potential_SOA: " );
cudasafe(cudaMalloc( (void**)&(type_gpu), nhalos*sizeof(int)),"Gradient2gpu.cu : Alloc type_gpu: " );
cudasafe(cudaMalloc( (void**)&(lens_x_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc x_gpu: " );
cudasafe(cudaMalloc( (void**)&(lens_y_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc y_gpu: " );
cudasafe(cudaMalloc( (void**)&(b0_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc b0_gpu: " );
cudasafe(cudaMalloc( (void**)&(angle_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc angle_gpu: " );
cudasafe(cudaMalloc( (void**)&(epot_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc epot_gpu: " );
cudasafe(cudaMalloc( (void**)&(rcore_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc rcore_gpu: " );
cudasafe(cudaMalloc( (void**)&(rcut_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc rcut_gpu: " );
cudasafe(cudaMalloc( (void**)&(anglecos_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc anglecos_gpu: " );
cudasafe(cudaMalloc( (void**)&(anglesin_gpu), nhalos*sizeof(type_t)),"Gradient2gpu.cu : Alloc anglesin_gpu: " );
cudasafe(cudaMalloc( (void**)&(frame_gpu), sizeof(grid_param)),"Gradient2gpu.cu : Alloc frame_gpu: " );
cudasafe(cudaMalloc( (void**)&(grid_grad2_a_gpu), (nbgridcells_x) * (nbgridcells_y) *sizeof(type_t)),"Gradient2gpu.cu : Alloc source_a_gpu: " );
cudasafe(cudaMalloc( (void**)&(grid_grad2_b_gpu), (nbgridcells_x) * (nbgridcells_y) *sizeof(type_t)),"Gradient2gpu.cu : Alloc source_b_gpu: " );
cudasafe(cudaMalloc( (void**)&(grid_grad2_c_gpu), (nbgridcells_x) * (nbgridcells_y) *sizeof(type_t)),"Gradient2gpu.cu : Alloc source_c_gpu: " );
cudasafe(cudaMalloc( (void**)&(grid_grad2_d_gpu), (nbgridcells_x) * (nbgridcells_y) *sizeof(type_t)),"Gradient2gpu.cu : Alloc source_d_gpu: " );
cudasafe(cudaMalloc( (void**)&(map_gpu), (nbgridcells_x) * (nbgridcells_y) *sizeof(type_t)),"Gradient2gpu.cu : Alloc map: " );
// Copy values to the GPU
//
cudasafe(cudaMemcpy(type_gpu,lens->type , nhalos*sizeof(int),cudaMemcpyHostToDevice ),"Gradient2gpu.cu : Copy type_gpu: " );
cudasafe(cudaMemcpy(lens_x_gpu,lens->position_x , nhalos*sizeof(type_t),cudaMemcpyHostToDevice ),"Gradient2gpu.cu : Copy x_gpu: " );
cudasafe(cudaMemcpy(lens_y_gpu,lens->position_y , nhalos*sizeof(type_t), cudaMemcpyHostToDevice),"Gradient2gpu.cu : Copy y_gpu: " );
cudasafe(cudaMemcpy(b0_gpu,lens->b0 , nhalos*sizeof(type_t), cudaMemcpyHostToDevice),"Gradient2pu.cu : Copy b0_gpu: " );
cudasafe(cudaMemcpy(angle_gpu,lens->ellipticity_angle , nhalos*sizeof(type_t), cudaMemcpyHostToDevice),"Gradient2gpu.cu : Copy angle_gpu: " );
cudasafe(cudaMemcpy(epot_gpu, lens->ellipticity_potential, nhalos*sizeof(type_t),cudaMemcpyHostToDevice ),"Gradient2gpu.cu : Copy epot_gpu: " );
cudasafe(cudaMemcpy(rcore_gpu, lens->rcore, nhalos*sizeof(type_t),cudaMemcpyHostToDevice ),"Gradient2gpu.cu : Copy rcore_gpu: " );
cudasafe(cudaMemcpy(rcut_gpu, lens->rcut, nhalos*sizeof(type_t), cudaMemcpyHostToDevice),"Gradient2gpu.cu : Copy rcut_gpu: " );
cudasafe(cudaMemcpy(anglecos_gpu, lens->anglecos, nhalos*sizeof(type_t),cudaMemcpyHostToDevice ),"Gradient2gpu.cu : Copy anglecos: " );
cudasafe(cudaMemcpy(anglesin_gpu, lens->anglesin, nhalos*sizeof(type_t), cudaMemcpyHostToDevice),"Gradient2gpu.cu : Copy anglesin: " );
cudasafe(cudaMemcpy(frame_gpu, frame, sizeof(grid_param), cudaMemcpyHostToDevice),"Gradient2gpu.cu : Copy fame_gpu: " );
//
lens_gpu->type = type_gpu;
lens_gpu->position_x = lens_x_gpu;
lens_gpu->position_y = lens_y_gpu;
lens_gpu->b0 = b0_gpu;
lens_gpu->ellipticity_angle = angle_gpu;
lens_gpu->ellipticity_potential = epot_gpu;
lens_gpu->rcore = rcore_gpu;
lens_gpu->rcut = rcut_gpu;
lens_gpu->anglecos = anglecos_gpu;
lens_gpu->anglesin = anglesin_gpu;
//
cudaMemcpy(lens_kernel, lens_gpu, sizeof(Potential_SOA), cudaMemcpyHostToDevice);
//
type_t time = -myseconds();
//
module_potentialDerivatives_totalGradient2_SOA_CPU_GPU(grid_grad2_a_gpu, grid_grad2_b_gpu, grid_grad2_c_gpu, grid_grad2_d_gpu, frame_gpu, lens_kernel, nhalos, dx, dy, nbgridcells_x, nbgridcells_y, istart, jstart);
//
//mapfunction(map_gpu,grid_grad2_a_gpu, grid_grad2_b_gpu, grid_grad2_c_gpu, grid_grad2_d_gpu,dl0s,dos,z,mode_amp,nhalos,nbgridcells_x,nbgridcells_y);
//amplif_grid_CPU_GPU(map_gpu,grid_grad2_a_gpu, grid_grad2_b_gpu, grid_grad2_c_gpu, grid_grad2_d_gpu,dl0s,z,mode_amp,nhalos,nbgridcells_x,nbgridcells_y);
//cudasafe(cudaGetLastError(), "module_potentialDerivative_totalGradient_SOA_CPU_GPU");
cudaDeviceSynchronize();
//
cudasafe(cudaMemcpy( map, map_gpu, (nbgridcells_x)*(nbgridcells_y)*sizeof(type_t), cudaMemcpyDeviceToHost )," --- Gradient2gpu.cu : Copy source_a_gpu: " );
//
time += myseconds();
std::cout << " kernel time = " << time << " s." << std::endl;
//printf("-----> %f %f \n",grid_grad_x[Nx], grid_grad_y[Ny]);
// Free GPU memory
cudaFree(lens_kernel);
cudaFree(type_gpu);
cudaFree(lens_x_gpu);
cudaFree(lens_y_gpu);
cudaFree(b0_gpu);
cudaFree(angle_gpu);
cudaFree(epot_gpu);
cudaFree(rcore_gpu);
cudaFree(rcut_gpu);
cudaFree(anglecos_gpu);
cudaFree(anglesin_gpu);
cudaFree(grid_grad2_a_gpu);
cudaFree(grid_grad2_b_gpu);
cudaFree(grid_grad2_c_gpu);
cudaFree(grid_grad2_d_gpu);
cudaFree(map_gpu);
}
#endif
////Map functions
//Amplification NR 1
void amplif_1_grid_CPU_GPU(type_t *map,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t ds, type_t dl, type_t h, type_t z, int nbgridcells_x, int nbgridcells_y, const struct grid_param *frame)
{
int GRID_SIZE_X = (nbgridcells_x + BLOCK_SIZE_X - 1)/BLOCK_SIZE_X; // number of blocks
int GRID_SIZE_Y = (nbgridcells_y + BLOCK_SIZE_Y - 1)/BLOCK_SIZE_Y;
//
//printf("grid_size_x = %d, grid_size_y = %d, nbgridcells_x = %d, nbgridcells_y = %d, istart = %d, jstart = %d (split)\n", GRID_SIZE_X, GRID_SIZE_Y, nbgridcells_x, nbgridcells_y, istart, jstart);
//
dim3 threads(BLOCK_SIZE_X, BLOCK_SIZE_Y/1);
dim3 grid (GRID_SIZE_X , GRID_SIZE_Y);
//
//printf("nhalos = %d, size of shared memory = %lf (split)\n", nhalos, (type_t) (8*nhalos + BLOCK_SIZE_X*BLOCK_SIZE_Y)*sizeof(type_t));
//
//std::cerr << "Amplif 1 :" <<dl0s<<" " <<ds<<" " << std::endl;
//
cudaMemset(map, 0, nbgridcells_x*nbgridcells_y*sizeof(type_t));
//
amplif_1_grid_GPU<<<grid, threads>>> (map,grid_grad2_a, grid_grad2_b,grid_grad2_c, grid_grad2_d,dl0s,ds,z,nbgridcells_x);
cudasafe(cudaGetLastError(), "amplif_grid_CPU_GPU");
//
cudaDeviceSynchronize();
printf("GPU kernel done...\n");
}
//
__global__ void amplif_1_grid_GPU(type_t *ampli,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t ds, type_t z,int nbgridcells)
{
type_t A,B,C;
ellipse amp;
type_t dlsds= dl0s/ds;
////
int col = blockIdx.x*blockDim.x + threadIdx.x;
int row = blockIdx.y*blockDim.y + threadIdx.y;
//
if ((row < nbgridcells) && (col < nbgridcells))
{
int index = row*nbgridcells + col;
A = 1. - grid_grad2_a[index]*dlsds; // 1 - DLS/DS * d2phixx
B = - grid_grad2_b[index]*dlsds; // - DLS/DS * d2phixy
C = 1. - grid_grad2_c[index]*dlsds; // 1 - DLS/DS * d2phiyy
amp = formeli_ampli(A, B, C);
ampli[index] = 1. / (amp.a * amp.b);
//if(col == 0 and row == 0)printf(" GPUUUU: Grad %f %f %f ABC %f %f %f dlsds %f ab %f %f %f \n",grid_grad2_a[index]*dlsds,grid_grad2_b[index]*dlsds, grid_grad2_c[index]*dlsds,A,B,C,dlsds,amp.a,amp.b,(A - C)*(A - C) + 4*B*B);
}
}
//Amplification NR 2
void amplif_2_grid_CPU_GPU(type_t *map,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t ds, type_t dl, type_t h, type_t z, int nbgridcells_x, int nbgridcells_y, const struct grid_param *frame)
{
int GRID_SIZE_X = (nbgridcells_x + BLOCK_SIZE_X - 1)/BLOCK_SIZE_X; // number of blocks
int GRID_SIZE_Y = (nbgridcells_y + BLOCK_SIZE_Y - 1)/BLOCK_SIZE_Y;
//
//printf("grid_size_x = %d, grid_size_y = %d, nbgridcells_x = %d, nbgridcells_y = %d, istart = %d, jstart = %d (split)\n", GRID_SIZE_X, GRID_SIZE_Y, nbgridcells_x, nbgridcells_y, istart, jstart);
//
dim3 threads(BLOCK_SIZE_X, BLOCK_SIZE_Y/1);
dim3 grid (GRID_SIZE_X , GRID_SIZE_Y);
//
//printf("nhalos = %d, size of shared memory = %lf (split)\n", nhalos, (type_t) (8*nhalos + BLOCK_SIZE_X*BLOCK_SIZE_Y)*sizeof(type_t));
//
cudaMemset(map, 0, nbgridcells_x*nbgridcells_y*sizeof(type_t));
//
amplif_2_grid_GPU<<<grid, threads>>> (map,grid_grad2_a, grid_grad2_b,grid_grad2_c, grid_grad2_d,dl0s,ds,z,nbgridcells_x);
cudasafe(cudaGetLastError(), "amplif_grid_CPU_GPU");
//
cudaDeviceSynchronize();
printf("GPU kernel done...\n");
}
//
__global__ void amplif_2_grid_GPU(type_t *ampli,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t ds, type_t z,int nbgridcells)
{
type_t A,B,C;
ellipse amp;
type_t dlsds= dl0s/ds;
////
int col = blockIdx.x*blockDim.x + threadIdx.x;
int row = blockIdx.y*blockDim.y + threadIdx.y;
//
if ((row < nbgridcells) && (col < nbgridcells))
{
int index = row*nbgridcells + col;
A = 1. - grid_grad2_a[index]*dlsds; // 1 - DLS/DS * d2phixx
B = - grid_grad2_b[index]*dlsds; // - DLS/DS * d2phixy
C = 1. - grid_grad2_c[index]*dlsds; // 1 - DLS/DS * d2phiyy
amp = formeli_ampli(A, B, C);
ampli[index] = 1. / fabs(amp.a * amp.b);
}
}
//Amplification NR 3
void amplif_3_grid_CPU_GPU(type_t *map,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t ds, type_t dl, type_t h, type_t z, int nbgridcells_x, int nbgridcells_y, const struct grid_param *frame)
{
int GRID_SIZE_X = (nbgridcells_x + BLOCK_SIZE_X - 1)/BLOCK_SIZE_X; // number of blocks
int GRID_SIZE_Y = (nbgridcells_y + BLOCK_SIZE_Y - 1)/BLOCK_SIZE_Y;
//
//printf("grid_size_x = %d, grid_size_y = %d, nbgridcells_x = %d, nbgridcells_y = %d, istart = %d, jstart = %d (split)\n", GRID_SIZE_X, GRID_SIZE_Y, nbgridcells_x, nbgridcells_y, istart, jstart);
//
dim3 threads(BLOCK_SIZE_X, BLOCK_SIZE_Y/1);
dim3 grid (GRID_SIZE_X , GRID_SIZE_Y);
//
//printf("nhalos = %d, size of shared memory = %lf (split)\n", nhalos, (type_t) (8*nhalos + BLOCK_SIZE_X*BLOCK_SIZE_Y)*sizeof(type_t));
//
cudaMemset(map, 0, nbgridcells_x*nbgridcells_y*sizeof(type_t));
//
amplif_3_grid_GPU<<<grid, threads>>> (map,grid_grad2_a, grid_grad2_b,grid_grad2_c, grid_grad2_d,dl0s,ds,z,nbgridcells_x);
cudasafe(cudaGetLastError(), "amplif_grid_CPU_GPU");
//
cudaDeviceSynchronize();
printf("GPU kernel done...\n");
}
//
__global__ void amplif_3_grid_GPU(type_t *ampli,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t ds, type_t z,int nbgridcells)
{
type_t A,B,C;
ellipse amp;
type_t dlsds= dl0s/ds;
////
int col = blockIdx.x*blockDim.x + threadIdx.x;
int row = blockIdx.y*blockDim.y + threadIdx.y;
//
if ((row < nbgridcells) && (col < nbgridcells))
{
int index = row*nbgridcells + col;
A = 1. - grid_grad2_a[index]*dlsds; // 1 - DLS/DS * d2phixx
B = - grid_grad2_b[index]*dlsds; // - DLS/DS * d2phixy
C = 1. - grid_grad2_c[index]*dlsds; // 1 - DLS/DS * d2phiyy
amp = formeli_ampli(A, B, C);
ampli[index] = -2.5 * log10(fabs(amp.a * amp.b));
}
}
//Amplification NR 4
void amplif_4_grid_CPU_GPU(type_t *map,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t ds, type_t dl, type_t h, type_t z, int nbgridcells_x, int nbgridcells_y, const struct grid_param *frame)
{
int GRID_SIZE_X = (nbgridcells_x + BLOCK_SIZE_X - 1)/BLOCK_SIZE_X; // number of blocks
int GRID_SIZE_Y = (nbgridcells_y + BLOCK_SIZE_Y - 1)/BLOCK_SIZE_Y;
//
//printf("grid_size_x = %d, grid_size_y = %d, nbgridcells_x = %d, nbgridcells_y = %d, istart = %d, jstart = %d (split)\n", GRID_SIZE_X, GRID_SIZE_Y, nbgridcells_x, nbgridcells_y, istart, jstart);
//
dim3 threads(BLOCK_SIZE_X, BLOCK_SIZE_Y/1);
dim3 grid (GRID_SIZE_X , GRID_SIZE_Y);
//
//printf("nhalos = %d, size of shared memory = %lf (split)\n", nhalos, (type_t) (8*nhalos + BLOCK_SIZE_X*BLOCK_SIZE_Y)*sizeof(type_t));
//
cudaMemset(map, 0, nbgridcells_x*nbgridcells_y*sizeof(type_t));
//
amplif_4_grid_GPU<<<grid, threads>>> (map,grid_grad2_a, grid_grad2_b,grid_grad2_c, grid_grad2_d,dl0s,ds,z,nbgridcells_x);
cudasafe(cudaGetLastError(), "amplif_grid_CPU_GPU");
//
cudaDeviceSynchronize();
printf("GPU kernel done...\n");
}
//
__global__ void amplif_4_grid_GPU(type_t *ampli,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t ds, type_t z,int nbgridcells)
{
//type_t kappa,ga1,ga2,gam,gp;
////
type_t dlsds = dl0s/ds;
int col = blockIdx.x*blockDim.x + threadIdx.x;
int row = blockIdx.y*blockDim.y + threadIdx.y;
//
if ((row < nbgridcells) && (col < nbgridcells))
{
int index = row*nbgridcells + col;
type_t kappa = (grid_grad2_a[index] + grid_grad2_c[index])*dlsds / 2.;
type_t ga1 = (grid_grad2_a[index] - grid_grad2_c[index])*dlsds / 2.;
type_t ga2 = grid_grad2_b[index]*dlsds;
type_t gam = sqrt(ga1 * ga1 + ga2 * ga2);
type_t gp = gam / (1 - kappa);
ampli[index] = (1 - kappa) * (1 + gp * gp) / (1 - gp * gp);
}
}
//Amplification NR 5
void amplif_5_grid_CPU_GPU(type_t *map,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t ds, type_t dl, type_t h, type_t z, int nbgridcells_x, int nbgridcells_y, const struct grid_param *frame)
{
int GRID_SIZE_X = (nbgridcells_x + BLOCK_SIZE_X - 1)/BLOCK_SIZE_X; // number of blocks
int GRID_SIZE_Y = (nbgridcells_y + BLOCK_SIZE_Y - 1)/BLOCK_SIZE_Y;
//
//printf("grid_size_x = %d, grid_size_y = %d, nbgridcells_x = %d, nbgridcells_y = %d, istart = %d, jstart = %d (split)\n", GRID_SIZE_X, GRID_SIZE_Y, nbgridcells_x, nbgridcells_y, istart, jstart);
//
dim3 threads(BLOCK_SIZE_X, BLOCK_SIZE_Y/1);
dim3 grid (GRID_SIZE_X , GRID_SIZE_Y);
//
//printf("nhalos = %d, size of shared memory = %lf (split)\n", nhalos, (type_t) (8*nhalos + BLOCK_SIZE_X*BLOCK_SIZE_Y)*sizeof(type_t));
//
cudaMemset(map, 0, nbgridcells_x*nbgridcells_y*sizeof(type_t));
//
amplif_5_grid_GPU<<<grid, threads>>> (map,grid_grad2_a, grid_grad2_b,grid_grad2_c, grid_grad2_d,dl0s,ds,z,nbgridcells_x);
cudasafe(cudaGetLastError(), "amplif_grid_CPU_GPU");
//
cudaDeviceSynchronize();
printf("GPU kernel done...\n");
}
//
__global__ void amplif_5_grid_GPU(type_t *ampli,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t ds, type_t z,int nbgridcells)
{
////
int col = blockIdx.x*blockDim.x + threadIdx.x;
int row = blockIdx.y*blockDim.y + threadIdx.y;
//
if ((row < nbgridcells) && (col < nbgridcells))
{
int index = row*nbgridcells + col;
type_t kappa = (grid_grad2_a[index] + grid_grad2_c[index]) / 2.;
ampli[index] = kappa;
//if(col == 0 and row == 0)printf(" GPUUUU: Grad %f %f %f ",grid_grad2_a[index], grid_grad2_b[index],grid_grad2_c[index]);
}
}
//Amplification NR 6
void amplif_6_grid_CPU_GPU(type_t *map,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t ds, type_t dl, type_t h, type_t z, int nbgridcells_x, int nbgridcells_y, const struct grid_param *frame)
{
int GRID_SIZE_X = (nbgridcells_x + BLOCK_SIZE_X - 1)/BLOCK_SIZE_X; // number of blocks
int GRID_SIZE_Y = (nbgridcells_y + BLOCK_SIZE_Y - 1)/BLOCK_SIZE_Y;
//
//printf("grid_size_x = %d, grid_size_y = %d, nbgridcells_x = %d, nbgridcells_y = %d, istart = %d, jstart = %d (split)\n", GRID_SIZE_X, GRID_SIZE_Y, nbgridcells_x, nbgridcells_y, istart, jstart);
//
dim3 threads(BLOCK_SIZE_X, BLOCK_SIZE_Y/1);
dim3 grid (GRID_SIZE_X , GRID_SIZE_Y);
//
//printf("nhalos = %d, size of shared memory = %lf (split)\n", nhalos, (type_t) (8*nhalos + BLOCK_SIZE_X*BLOCK_SIZE_Y)*sizeof(type_t));
//
cudaMemset(map, 0, nbgridcells_x*nbgridcells_y*sizeof(type_t));
//
amplif_6_grid_GPU<<<grid, threads>>> (map,grid_grad2_a, grid_grad2_b,grid_grad2_c, grid_grad2_d,dl0s, ds,z,nbgridcells_x);
cudasafe(cudaGetLastError(), "amplif_grid_CPU_GPU");
//
cudaDeviceSynchronize();
printf("GPU kernel done...\n");
}
//
__global__ void amplif_6_grid_GPU(type_t *ampli,type_t *grid_grad2_a,type_t *grid_grad2_b,type_t *grid_grad2_c,type_t *grid_grad2_d, type_t dl0s, type_t ds, type_t z,int nbgridcells)
{
////
int col = blockIdx.x*blockDim.x + threadIdx.x;
int row = blockIdx.y*blockDim.y + threadIdx.y;
//
if ((row < nbgridcells) && (col < nbgridcells))
{
int index = row*nbgridcells + col;
type_t ga1 = (grid_grad2_a[index] - grid_grad2_c[index]) / 2.;
type_t ga2 = grid_grad2_b[index];
type_t gam = sqrt(ga1 * ga1 + ga2 * ga2);
ampli[index] = gam;
}
}
__device__ struct ellipse formeli_ampli(type_t a, type_t b, type_t c)
{
struct ellipse eli;
type_t e, delta, lambda, mu;
// eq carateristique : det(M-xI) = 0
delta = (a - c)*(a - c) + 4*b*b; // 4*gamma^2 (cf phd_JPK eq 2.56)
e = sqrt(delta); /*e is 2 * shear, ie 2*gamma*/
lambda = .5*(a + c + e); // 1 - k + gamma
mu = .5*(a + c - e); // 1 - k - gamma
eli.a = lambda;
eli.b = mu;
if (lambda != mu && fabs(b) > 1e-5)
eli.theta = atan2(lambda - a, b); // cf phd_JPK eq 2.58, and
// tan(theta)= ( -cos(2theta) +- 1 ) / sin(2theta)
// ADDED by EJ 29/11/2007
else if ( a >= c ) // ellipse aligned along the major axis of magnification
eli.theta = 0.;
else
eli.theta = acos(-1.) / 2.; // ellipse aligned along the minor axis of magnification
return(eli);
}

Event Timeline