Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92442250
main.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 20, 08:26
Size
8 KB
Mime Type
text/x-c
Expires
Fri, Nov 22, 08:26 (2 d)
Engine
blob
Format
Raw Data
Handle
22439852
Attached To
R1448 Lenstool-HPC
main.cpp
View Options
/**
* @file main.cpp
* @Author Christoph Schaaefer, EPFL (christophernstrerne.schaefer@epfl.ch)
* @date October 2016
* @brief Benchmark for gradhalo function
*/
#include <iostream>
#include <string.h>
#include <cuda_runtime.h>
#include "structure.h"
#include <math.h>
#include <sys/time.h>
#include <fstream>
/** for both gradient and second derivatives **/
static
struct
point
rotateCoordinateSystem
(
struct
point
P
,
double
theta
);
/** gradient **/
struct
point
module_potentialDerivatives_totalGradient
(
const
runmode_param
*
runmode
,
const
struct
point
*
pImage
,
const
struct
Potential
*
lens
);
static
struct
point
grad_halo
(
const
struct
point
*
pImage
,
const
struct
Potential
*
lens
);
/** PIEMD **/
static
complex
piemd_1derivatives_ci05
(
double
x
,
double
y
,
double
eps
,
double
rc
);
/** Potential **/
void
module_readParameters_calculatePotentialparameter
(
Potential
*
lens
);
int
main
()
{
//Constant
int
small
(
10
);
int
medium
(
100
);
int
big
(
1000
);
//Variable creation
struct
timeval
t1
,
t2
,
t3
,
t4
;
runmode_param
runmodesmall
;
runmode_param
runmodemedium
;
runmode_param
runmodebig
;
point
image
;
Potential
*
ilens
;
Potential
lens
[
big
];
//Initialisation
runmodesmall
.
nhalos
=
small
;
runmodemedium
.
nhalos
=
medium
;
runmodebig
.
nhalos
=
big
;
image
.
x
=
image
.
y
=
2
;
for
(
int
i
=
0
;
i
<
big
;
++
i
){
ilens
=
&
lens
[
i
];
ilens
->
position
.
x
=
ilens
->
position
.
y
=
0.
;
ilens
->
type
=
8
;
ilens
->
ellipticity
=
0.11
;
ilens
->
ellipticity_potential
=
0.
;
ilens
->
ellipticity_angle
=
0.
;
ilens
->
rcut
=
5.
;
ilens
->
rcore
=
1
;
ilens
->
weight
=
0
;
ilens
->
rscale
=
0
;
ilens
->
exponent
=
0
;
ilens
->
alpha
=
0.
;
ilens
->
einasto_kappacritic
=
0
;
ilens
->
z
=
0.4
;
module_readParameters_calculatePotentialparameter
(
ilens
);
}
gettimeofday
(
&
t1
,
0
);
module_potentialDerivatives_totalGradient
(
&
runmodesmall
,
&
image
,
lens
);
gettimeofday
(
&
t2
,
0
);
module_potentialDerivatives_totalGradient
(
&
runmodemedium
,
&
image
,
lens
);
gettimeofday
(
&
t3
,
0
);
module_potentialDerivatives_totalGradient
(
&
runmodebig
,
&
image
,
lens
);
gettimeofday
(
&
t4
,
0
);
double
time1
=
(
1000000.0
*
(
t2
.
tv_sec
-
t1
.
tv_sec
)
+
t2
.
tv_usec
-
t1
.
tv_usec
)
/
1000000.0
;
double
time2
=
(
1000000.0
*
(
t3
.
tv_sec
-
t2
.
tv_sec
)
+
t3
.
tv_usec
-
t2
.
tv_usec
)
/
1000000.0
;
double
time3
=
(
1000000.0
*
(
t4
.
tv_sec
-
t3
.
tv_sec
)
+
t4
.
tv_usec
-
t3
.
tv_usec
)
/
1000000.0
;
std
::
cout
<<
"Benchmark for Gradient Calculation "
<<
std
::
endl
;
std
::
cout
<<
"Sample size "
<<
small
<<
": "
<<
time1
<<
std
::
endl
;
std
::
cout
<<
"Sample size "
<<
medium
<<
": "
<<
time2
<<
std
::
endl
;
std
::
cout
<<
"Sample size "
<<
big
<<
": "
<<
time3
<<
std
::
endl
;
std
::
ofstream
myfile
;
myfile
.
open
(
"BenchmarkGrad.txt"
);
myfile
<<
"Benchmark for Gradient Calculation "
<<
std
::
endl
;
myfile
<<
"Sample size "
<<
small
<<
": "
<<
time1
<<
std
::
endl
;
myfile
<<
"Sample size "
<<
medium
<<
": "
<<
time2
<<
std
::
endl
;
myfile
<<
"Sample size "
<<
big
<<
": "
<<
time3
<<
std
::
endl
;
myfile
.
close
();
}
struct
point
module_potentialDerivatives_totalGradient
(
const
runmode_param
*
runmode
,
const
struct
point
*
pImage
,
const
struct
Potential
*
lens
)
{
struct
point
grad
,
clumpgrad
;
grad
.
x
=
0
;
grad
.
y
=
0
;
for
(
int
i
=
0
;
i
<
runmode
->
nhalos
;
i
++
){
clumpgrad
=
grad_halo
(
pImage
,
&
lens
[
i
]);
//compute gradient for each clump separately
if
(
clumpgrad
.
x
==
clumpgrad
.
x
or
clumpgrad
.
y
==
clumpgrad
.
y
){
//nan check
grad
.
x
+=
clumpgrad
.
x
;
grad
.
y
+=
clumpgrad
.
y
;
}
// add the gradients
}
return
(
grad
);
}
/**@brief Return the gradient of the projected lens potential for one clump
* !!! You have to multiply by dlsds to obtain the true gradient
* for the expressions, see the papers : JP Kneib & P Natarajan, Cluster Lenses, The Astronomy and Astrophysics Review (2011) for 1 and 2
* and JP Kneib PhD (1993) for 3
*
* @param pImage point where the result is computed in the lens plane
* @param lens mass distribution
*/
static
struct
point
grad_halo
(
const
struct
point
*
pImage
,
const
struct
Potential
*
lens
)
{
struct
point
true_coord
,
true_coord_rotation
,
result
;
double
R
,
angular_deviation
;
complex
zis
;
result
.
x
=
result
.
y
=
0.
;
/*positionning at the potential center*/
true_coord
.
x
=
pImage
->
x
-
lens
->
position
.
x
;
// Change the origin of the coordinate system to the center of the clump
true_coord
.
y
=
pImage
->
y
-
lens
->
position
.
y
;
switch
(
lens
->
type
)
{
case
(
5
)
:
/*Elliptical Isothermal Sphere*/
/*rotation of the coordiante axes to match the potential axes*/
true_coord_rotation
=
rotateCoordinateSystem
(
true_coord
,
lens
->
ellipticity_angle
);
R
=
sqrt
(
true_coord_rotation
.
x
*
true_coord_rotation
.
x
*
(
1
-
lens
->
ellipticity
/
3.
)
+
true_coord_rotation
.
y
*
true_coord_rotation
.
y
*
(
1
+
lens
->
ellipticity
/
3.
));
//ellippot = ellipmass/3
result
.
x
=
(
1
-
lens
->
ellipticity
/
3.
)
*
lens
->
b0
*
true_coord_rotation
.
x
/
(
R
);
result
.
y
=
(
1
+
lens
->
ellipticity
/
3.
)
*
lens
->
b0
*
true_coord_rotation
.
y
/
(
R
);
break
;
case
(
8
)
:
/* PIEMD */
/*rotation of the coordiante axes to match the potential axes*/
true_coord_rotation
=
rotateCoordinateSystem
(
true_coord
,
lens
->
ellipticity_angle
);
/*Doing something....*/
zis
=
piemd_1derivatives_ci05
(
true_coord_rotation
.
x
,
true_coord_rotation
.
y
,
lens
->
ellipticity_potential
,
lens
->
rcore
);
result
.
x
=
lens
->
b0
*
zis
.
re
;
result
.
y
=
lens
->
b0
*
zis
.
im
;
break
;
default
:
std
::
cout
<<
"ERROR: Grad 1 profil type of clump "
<<
lens
->
name
<<
" unknown : "
<<
lens
->
type
<<
std
::
endl
;
break
;
};
return
result
;
}
/**** usefull functions for PIEMD profile : see old lenstool ****/
/** I*w,v=0.5 Kassiola & Kovner, 1993 PIEMD, paragraph 4.1
*
* Global variables used :
* - none
*/
static
complex
piemd_1derivatives_ci05
(
double
x
,
double
y
,
double
eps
,
double
rc
)
{
double
sqe
,
cx1
,
cxro
,
cyro
,
rem2
;
complex
zci
,
znum
,
zden
,
zis
,
zres
;
double
norm
;
sqe
=
sqrt
(
eps
);
cx1
=
(
1.
-
eps
)
/
(
1.
+
eps
);
cxro
=
(
1.
+
eps
)
*
(
1.
+
eps
);
cyro
=
(
1.
-
eps
)
*
(
1.
-
eps
);
rem2
=
x
*
x
/
cxro
+
y
*
y
/
cyro
;
/*zci=cpx(0.,-0.5*(1.-eps*eps)/sqe);
znum=cpx(cx1*x,(2.*sqe*sqrt(rc*rc+rem2)-y/cx1));
zden=cpx(x,(2.*rc*sqe-y));
zis=pcpx(zci,lncpx(dcpx(znum,zden)));
zres=pcpxflt(zis,b0);*/
// --> optimized code
zci
.
re
=
0
;
zci
.
im
=
-
0.5
*
(
1.
-
eps
*
eps
)
/
sqe
;
znum
.
re
=
cx1
*
x
;
znum
.
im
=
2.
*
sqe
*
sqrt
(
rc
*
rc
+
rem2
)
-
y
/
cx1
;
zden
.
re
=
x
;
zden
.
im
=
2.
*
rc
*
sqe
-
y
;
norm
=
zden
.
re
*
zden
.
re
+
zden
.
im
*
zden
.
im
;
// zis = znum/zden
zis
.
re
=
(
znum
.
re
*
zden
.
re
+
znum
.
im
*
zden
.
im
)
/
norm
;
zis
.
im
=
(
znum
.
im
*
zden
.
re
-
znum
.
re
*
zden
.
im
)
/
norm
;
norm
=
zis
.
re
;
zis
.
re
=
log
(
sqrt
(
norm
*
norm
+
zis
.
im
*
zis
.
im
));
// ln(zis) = ln(|zis|)+i.Arg(zis)
zis
.
im
=
atan2
(
zis
.
im
,
norm
);
// norm = zis.re;
zres
.
re
=
zci
.
re
*
zis
.
re
-
zci
.
im
*
zis
.
im
;
// Re( zci*ln(zis) )
zres
.
im
=
zci
.
im
*
zis
.
re
+
zis
.
im
*
zci
.
re
;
// Im( zci*ln(zis) )
//zres.re = zis.re*b0;
//zres.im = zis.im*b0;
return
(
zres
);
}
/// Useful functions
// changes the coordinates of point P into a new basis (rotation of angle theta)
// y' y x'
// * | /
// * | / theta
// * | /
// *|--------->x
static
struct
point
rotateCoordinateSystem
(
struct
point
P
,
double
theta
)
{
struct
point
Q
;
Q
.
x
=
P
.
x
*
cos
(
theta
)
+
P
.
y
*
sin
(
theta
);
Q
.
y
=
P
.
y
*
cos
(
theta
)
-
P
.
x
*
sin
(
theta
);
return
(
Q
);
}
/** @brief This module function calculates profile depended information like the impactparameter b0 and the potential ellipticity epot
*
* @param lens: mass distribution for which to calculate parameters
*/
void
module_readParameters_calculatePotentialparameter
(
Potential
*
lens
){
switch
(
lens
->
type
)
{
case
(
5
)
:
/*Elliptical Isothermal Sphere*/
//impact parameter b0
lens
->
b0
=
4
*
pi_c2
*
lens
->
vdisp
*
lens
->
vdisp
;
//ellipticity_potential
lens
->
ellipticity_potential
=
lens
->
ellipticity
/
3
;
break
;
case
(
8
)
:
/* PIEMD */
//impact parameter b0
lens
->
b0
=
6.
*
pi_c2
*
lens
->
vdisp
*
lens
->
vdisp
;
//ellipticity_parameter
if
(
lens
->
ellipticity
==
0.
&&
lens
->
ellipticity_potential
!=
0.
){
// emass is (a2-b2)/(a2+b2)
lens
->
ellipticity
=
2.
*
lens
->
ellipticity_potential
/
(
1.
+
lens
->
ellipticity_potential
*
lens
->
ellipticity_potential
);
//printf("1 : %f %f \n",lens->ellipticity,lens->ellipticity_potential);
}
else
if
(
lens
->
ellipticity
==
0.
&&
lens
->
ellipticity_potential
==
0.
){
lens
->
ellipticity_potential
=
0.00001
;
//printf("2 : %f %f \n",lens->ellipticity,lens->ellipticity_potential);
}
else
{
// epot is (a-b)/(a+b)
lens
->
ellipticity_potential
=
(
1.
-
sqrt
(
1
-
lens
->
ellipticity
*
lens
->
ellipticity
))
/
lens
->
ellipticity
;
//printf("3 : %f %f \n",lens->ellipticity,lens->ellipticity_potential);
}
break
;
default
:
std
::
cout
<<
"ERROR: LENSPARA profil type of clump "
<<
lens
->
name
<<
" unknown : "
<<
lens
->
type
<<
std
::
endl
;
//printf( "ERROR: LENSPARA profil type of clump %s unknown : %d\n",lens->name, lens->type);
break
;
};
}
Event Timeline
Log In to Comment