Page MenuHomec4science

e_sersic.c
No OneTemporary

File Metadata

Created
Thu, Jan 2, 17:18

e_sersic.c

#include<stdio.h>
#include<math.h>
#include<fonction.h>
#include<constant.h>
#include<dimension.h>
#include<structure.h>
#define ITMAX 100
#define EPS 3.0e-7
#define FPMIN 1.0e-30
static double b(double n);
static double sersic_m(double r, double re, double n, double kappae);
// From Numerical recipes
static double gammln(double xx);
static double gammp(double a, double x);
static void gser(double *gamser, double a, double x, double *gln);
static void gcf(double *gammcf, double a, double x, double *gln);
/****************************************************************/
/* name: e_sersic */
/* author: Ardis Eliasdottir */
/* date: 01/2007 */
/* place: Copenhagen */
/****************************************************************/
/* Global variables used :
* - none
* Given by re*alpha(x) where alpha(x) is the dimensionless deflection
* angle (see eg. eq.8.3 in Schneider, Ehlers and Falco 1992)
* */
double sersic_dpl(double r, double re, double n, double kappae)
{
double sersic_dpl;
sersic_dpl = 0.;
if ( r > 0 ) sersic_dpl = re * sersic_m(r, re, n, kappae) / (r / re);
return( sersic_dpl );
}
/* --------------------------------------------------------------*/
/* Global variables used :
* - none
* */
double sersic_kappa(double r, double re, double n, double kappae)
{
return(kappae*exp(-b(n)*(pow(r / re, 1. / n) - 1.)));
}
/* --------------------------------------------------------------*/
/* Global variables used :
* - none
* Gamma(n)=exp(gammln(n))
* Gamma(n,x)=Gamma(n)*gammq(n,x)
* gamma(n,x)=Gamma(n)-Gamma(n,x)=Gamma(n)*gammp(n,x)
* */
double sersic_kappa_av(double r, double re, double n, double kappae)
{
double sersic_kappa_av;
double B = b(n);
sersic_kappa_av = kappae * exp(B);
if ( r > 0 ) sersic_kappa_av = kappae * 2.*pow(B, -2.*n) * n *
exp(B) * exp(gammln(2.*n)) * gammp(2.*n, B * pow(r / re, 1. / n)) / r / r * re * re;
return( sersic_kappa_av );
}
/* --------------------------------------------------------------*/
/* Global variables used :
* - none
* */
double sersic_gamma(double r, double re, double n, double kappae)
{
return(sersic_kappa_av(r, re, n, kappae) - sersic_kappa(r, re, n, kappae));
}
/* --------------------------------------------------------------*/
/* Global variables used :
* - none
* */
double sersic_kappa_eps(double r, double re, double n, double theta, double kappae, double eps)
{
double kappa_eps;
kappa_eps = sersic_kappa(r, re, n, kappae) + eps * cos(2.*theta) * sersic_gamma(r, re, n, kappae);
return(kappa_eps);
}
/* --------------------------------------------------------------*
* Return gamma1 and gamma2 for a pseudo-elliptical potential
* Global variables used :
* - none
*/
struct point sersic_gamma_eps(double r, double re, double n, double theta, double kappae, double eps)
{
struct point gamma_eps;
double kappa, gamma;
kappa = sersic_kappa(r, re, n, kappae);
gamma = sersic_gamma(r, re, n, kappae);
//gamma_eps = sqrt(pow(sersic_gamma(r, re, n, kappae), 2.) + 2.*eps * cos(2.*theta) * sersic_kappa(r, re, n, kappae) * sersic_gamma(r, re, n, kappae) + eps * eps * (pow(sersic_kappa(r, re, n, kappae), 2.) - pow(sin(2.*theta) * sersic_gamma(r, re, n, kappae), 2.)));
//
gamma_eps.x = gamma * cos(2. * theta) + eps * kappa; // gamma1
gamma_eps.y = -sqrt(1. - eps * eps) * gamma * sin(2. * theta); // gamma2
return(gamma_eps);
}
/* --------------------------------------------------------------*/
/* Global variables used :
* - none
* This is an approximation (see Ciotti & Bertin 1999) to the
* equation Gamma(2n,b(n))=Gamma(2n)/2
* */
static double b(double n)
{
return( 2.*n - 1. / 3. + 4. / 405. / n + 46. / 25515. / n / n );
}
/* --------------------------------------------------------------*/
/* Global variables used :
* - none
* This calculates the (dimensionless) 2D mass within radius r
* divided by pi (?), given by 2 Integrate(x' Kappa(x')_0^x)
* */
static double sersic_m(double r, double re, double n, double kappae)
{
double B = b(n);
return 2.*kappae*pow(B, -2.*n)*exp(B)*n*exp(gammln(2.*n))*gammp(2.*n, B*pow(r / re, 1. / n));
}
/* --------------------------------------------------------------*/
/* Global variables used :
* - none
* This is the ln of the Gamma function
* Taken from Numerical Recipes in C, second edition
* */
static double gammln(double xx)
{
double x, y, tmp, ser;
double cof[6] = { 76.18009172947146,
-86.50532032941677,
24.01409824083091,
-1.231739572450155,
0.1208650973866179e-2,
-0.5395239384953e-5
};
int j;
y = x = xx;
tmp = x + 5.5;
tmp -= (x + 0.5) * log(tmp);
ser = 1.000000000190015;
for (j = 0; j <= 5; j++) ser += cof[j] / ++y;
return -tmp + log(2.5066282746310005*ser / x);
}
/* --------------------------------------------------------------*/
/* Pointers (Global variables?) used :
* - *gammcf, *gamser, *gln
* Returns the incomplete gamma function
* Taken from Numerical Recipes in C, second edition
* */
static double gammp(double a, double x)
{
double gamser, gammcf, gln;
if ( x < 0.0 || a <= 0.0 )
fprintf(stderr, "ERROR: (Sersic:gammp) Invalid arguments\n");
if ( x < a + 1.0 )
{
gser(&gamser, a, x, &gln);
return gamser;
}
else
{
gcf(&gammcf, a, x, &gln);
return 1.0 - gammcf;
}
}
/* --------------------------------------------------------------*/
/* Pointers (Global variables?) used :
* *gamser, *gln
*
* Taken from Numerical Recipes in C, second edition
* */
static void gser(double *gamser, double a, double x, double *gln)
{
int n;
double sum, del, ap;
*gln = gammln(a);
if ( x <= 0.0 )
{
if ( x < 0.0 )
fprintf(stderr, "ERROR: (Sersic:gser) x less than 0\n");
*gamser = 0.0;
return;
}
else
{
ap = a;
del = sum = 1.0 / a;
for (n = 1; n <= ITMAX; n++)
{
++ap;
del *= x / ap;
sum += del;
if (fabs(del) < fabs(sum)*EPS)
{
*gamser = sum * exp(-x + a * log(x) - (*gln));
return;
}
}
fprintf(stderr, "ERROR: (Sersic:gser) a too large, ITMAX too small\n");
}
}
/* --------------------------------------------------------------*/
/* Pointers used (global variables?) :
* *gammcf, *gln
*
* Taken from Numerical Recipes in C, second edition
* */
static void gcf(double *gammcf, double a, double x, double *gln)
{
int i;
double an, b, c, d, del, h;
*gln = gammln(a);
b = x + 1.0 - a;
c = 1.0 / FPMIN;
d = 1.0 / b;
h = d;
for (i = 1; i <= ITMAX; i++)
{
an = -i * (i - a);
b += 2.0;
d = an * d + b;
if (fabs(d) < FPMIN) d = FPMIN;
c = b + an / c;
if (fabs(c) < FPMIN) c = FPMIN;
d = 1.0 / d;
del = d * c;
h *= del;
if (fabs(del - 1.0) < EPS) break;
}
if (i > ITMAX)
fprintf(stderr, "ERROR: (Sersic:gcf) a too large, ITMAX too small\n");
*gammcf = exp(-x + a * log(x) - (*gln)) * h;
}
#undef ITMAX
#undef EPS
#undef FPMIN

Event Timeline