Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F98974173
isoima.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jan 18, 04:10
Size
3 KB
Mime Type
text/x-c
Expires
Mon, Jan 20, 04:10 (2 d)
Engine
blob
Format
Raw Data
Handle
23677053
Attached To
R1448 Lenstool-HPC
isoima.c
View Options
#include<stdio.h>
#include<math.h>
#include<fonction.h>
#include<constant.h>
#include<dimension.h>
#include<structure.h>
static
void
rotelip
(
struct
ellipse
*
el
,
double
theta
,
struct
ellipse
*
el_r
);
static
void
formatrix
(
struct
ellipse
*
eli
,
struct
matrix
*
r
);
static
void
mag
(
struct
matrix
*
A
,
struct
ellipse
*
ampli
,
struct
matrix
*
B
);
/****************************************************************/
/* nom: isoima */
/* auteur: Jean-Paul Kneib */
/* date: 10/02/92 */
/* place: Toulouse */
/****************************************************************
* Convert an ellipse from source to image plane or from
* image to source plane according to the amplification matrix.
*
* When passing from image to source plane, ampli is the eigenvalues of the A^-1 matrix
* ( 1-k+gamma, 1-k-gamma ) and theta is the magnification axis angle theta_pot.
*
* When passing from the source to the image plane, ampli is the eigenvalues of the A matrix
* ( 1 / (1-k+gamma), 1 / (1-k-gamma) ) and theta is ALSO the magnification axis angle theta_pot.
*
* ampli(IN) : not modified
* Global variables used :
* - none
*/
void
isoima
(
struct
ellipse
*
es
,
struct
ellipse
*
ampli
,
struct
ellipse
*
ei
)
{
struct
ellipse
esm
,
eim
;
struct
matrix
S
,
I
;
/* on se place dans le repere de magnification*/
rotelip
(
es
,
ampli
->
theta
,
&
esm
);
/* la matrice des fij, c'est le carre des longueur !!! */
esm
.
a
=
esm
.
a
*
esm
.
a
;
esm
.
b
=
esm
.
b
*
esm
.
b
;
/* on determine la matrice correspondante f_i ou f_s (eq 2.92 JPK PhD thesis) */
formatrix
(
&
esm
,
&
S
);
/* on determine la matrice image */
mag
(
&
S
,
ampli
,
&
I
);
/* on determine l'ellipsoide correspondant par diagonalisation */
eim
=
formeli
(
I
.
a
,
I
.
b
,
I
.
c
);
/* l'ellipse c'est la racine carre de l'ellipsoide */
eim
.
a
=
sqrt
(
eim
.
a
);
eim
.
b
=
sqrt
(
eim
.
b
);
/* on retourne dans le repere propre*/
rotelip
(
&
eim
,
-
ampli
->
theta
,
ei
);
}
/* Change the ellipse angle from its original reference frame to a new reference frame
* with the same origin but rotated by an angle theta.
*/
static
void
rotelip
(
struct
ellipse
*
el
,
double
theta
,
struct
ellipse
*
el_r
)
{
el_r
->
a
=
el
->
a
;
el_r
->
b
=
el
->
b
;
el_r
->
theta
=
el
->
theta
-
theta
;
}
/* Build a matrix form of the ellipse. The procedure works in both the source and the image plane.
* theta_i = 0 means that the ellipse major axis is aligned with the magnification direction
* theta_pot.
*/
static
void
formatrix
(
struct
ellipse
*
eli
,
struct
matrix
*
r
)
{
struct
matrix
m
;
m
.
a
=
eli
->
a
;
// start with fij = | a^2 0 |
m
.
c
=
eli
->
b
;
// | 0 b^2 |
m
.
b
=
m
.
d
=
0.
;
*
r
=
rotmatrix
(
&
m
,
eli
->
theta
);
// and apply the rotation f = R(theta_i) fij R(-theta_i)
// if theta_i = 0, f = fij
}
static
void
mag
(
struct
matrix
*
A
,
struct
ellipse
*
ampli
,
struct
matrix
*
B
)
{
double
alpha
,
beta
;
alpha
=
ampli
->
a
;
// streching or shrinking factor along major magnification axis
beta
=
ampli
->
b
;
// streching or shrinking factor along minor magnification axis
B
->
a
=
alpha
*
alpha
*
A
->
a
;
// see eq 2.109 of JPK PhD thesis
B
->
b
=
B
->
d
=
alpha
*
beta
*
A
->
b
;
// where alpha is 1-K+gamma and beta is 1-K-gamma when passing
B
->
c
=
beta
*
beta
*
A
->
c
;
// from image to source plane.
}
Event Timeline
Log In to Comment