Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F98972732
main.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jan 18, 03:53
Size
8 KB
Mime Type
text/x-c
Expires
Mon, Jan 20, 03:53 (2 d)
Engine
blob
Format
Raw Data
Handle
23649334
Attached To
R1448 Lenstool-HPC
main.cpp
View Options
/**
* @file main.cpp
* @Author Christoph Schaaefer, EPFL (christophernstrerne.schaefer@epfl.ch)
* @date October 2016
* @brief Benchmark for gradhalo function
*/
#include <iostream>
#include <string.h>
#include "structure.h"
#include <math.h>
#include <sys/time.h>
#include <fstream>
/** for both gradient and second derivatives **/
static struct point rotateCoordinateSystem(struct point P, double theta);
/** gradient **/
struct point module_potentialDerivatives_totalGradient(const runmode_param *runmode, const struct point *pImage, const struct Potential *lens);
static struct point grad_halo(const struct point *pImage, const struct Potential *lens);
/** PIEMD **/
static complex piemd_1derivatives_ci05(double x, double y, double eps, double rc);
/** Potential **/
void module_readParameters_calculatePotentialparameter(Potential *lens);
int main()
{
//Constant
int small(10);
int medium(100);
int big(1000);
//Variable creation
struct timeval t1, t2, t3, t4;
runmode_param runmodesmall;
runmode_param runmodemedium;
runmode_param runmodebig;
point image;
Potential *ilens;
Potential lens[big];
//Initialisation
runmodesmall.nhalos = small;
runmodemedium.nhalos = medium;
runmodebig.nhalos = big;
image.x = image.y = 2;
for (int i = 0; i <big; ++i){
ilens = &lens[i];
ilens->vdisp = 1.;
ilens->position.x = ilens->position.y = 0.;
ilens->type = 8;
ilens->ellipticity = 0.11;
ilens->ellipticity_potential = 0.;
ilens->ellipticity_angle = 0.;
ilens->rcut = 5.;
ilens->rcore = 1;
ilens->weight = 0;
ilens->rscale = 0;
ilens->exponent = 0;
ilens->alpha = 0.;
ilens->einasto_kappacritic = 0;
ilens->z = 0.4;
module_readParameters_calculatePotentialparameter(ilens);
}
gettimeofday(&t1, 0);
module_potentialDerivatives_totalGradient(&runmodesmall,&image, lens);
gettimeofday(&t2, 0);
module_potentialDerivatives_totalGradient(&runmodemedium,&image, lens);
gettimeofday(&t3, 0);
module_potentialDerivatives_totalGradient(&runmodebig,&image, lens);
gettimeofday(&t4, 0);
double time1 = (1000000.0*(t2.tv_sec-t1.tv_sec) + t2.tv_usec-t1.tv_usec)/1000000.0;
double time2 = (1000000.0*(t3.tv_sec-t2.tv_sec) + t3.tv_usec-t2.tv_usec)/1000000.0;
double time3 = (1000000.0*(t4.tv_sec-t3.tv_sec) + t4.tv_usec-t3.tv_usec)/1000000.0;
std::cout << "Benchmark for Gradient Calculation "<< std::endl;
std::cout << "Sample size " << small << ": " << time1 << std::endl;
std::cout << "Sample size " << medium << ": " << time2 << std::endl;
std::cout << "Sample size " << big << ": " << time3 << std::endl;
std::ofstream myfile;
myfile.open ("BenchmarkGrad.txt");
myfile << "Benchmark for Gradient Calculation "<< std::endl;
myfile << "Sample size " << small << ": " << time1 << std::endl;
myfile << "Sample size " << medium << ": " << time2 << std::endl;
myfile << "Sample size " << big << ": " << time3 << std::endl;
myfile.close();
}
struct point module_potentialDerivatives_totalGradient(const runmode_param *runmode, const struct point *pImage, const struct Potential *lens)
{
struct point grad, clumpgrad;
grad.x=0;
grad.y=0;
for(int i=0; i<runmode->nhalos; i++){
clumpgrad=grad_halo(pImage,&lens[i]); //compute gradient for each clump separately
if(clumpgrad.x == clumpgrad.x or clumpgrad.y == clumpgrad.y){ //nan check
grad.x+=clumpgrad.x;
grad.y+=clumpgrad.y;
} // add the gradients
}
return(grad);
}
/**@brief Return the gradient of the projected lens potential for one clump
* !!! You have to multiply by dlsds to obtain the true gradient
* for the expressions, see the papers : JP Kneib & P Natarajan, Cluster Lenses, The Astronomy and Astrophysics Review (2011) for 1 and 2
* and JP Kneib PhD (1993) for 3
*
* @param pImage point where the result is computed in the lens plane
* @param lens mass distribution
*/
static struct point grad_halo(const struct point *pImage, const struct Potential *lens)
{
struct point true_coord, true_coord_rotation, result;
double R, angular_deviation;
complex zis;
result.x = result.y = 0.;
/*positionning at the potential center*/
true_coord.x = pImage->x - lens->position.x; // Change the origin of the coordinate system to the center of the clump
true_coord.y = pImage->y - lens->position.y;
switch (lens->type)
{
case(5): /*Elliptical Isothermal Sphere*/
/*rotation of the coordiante axes to match the potential axes*/
true_coord_rotation = rotateCoordinateSystem(true_coord, lens->ellipticity_angle);
R=sqrt(true_coord_rotation.x*true_coord_rotation.x*(1-lens->ellipticity/3.)+true_coord_rotation.y*true_coord_rotation.y*(1+lens->ellipticity/3.)); //ellippot = ellipmass/3
result.x=(1-lens->ellipticity/3.)*lens->b0*true_coord_rotation.x/(R);
result.y=(1+lens->ellipticity/3.)*lens->b0*true_coord_rotation.y/(R);
break;
case(8): /* PIEMD */
/*rotation of the coordiante axes to match the potential axes*/
true_coord_rotation = rotateCoordinateSystem(true_coord, lens->ellipticity_angle);
/*Doing something....*/
zis = piemd_1derivatives_ci05(true_coord_rotation.x, true_coord_rotation.y, lens->ellipticity_potential, lens->rcore);
result.x=lens->b0 * zis.re;
result.y=lens->b0 * zis.im;
break;
default:
std::cout << "ERROR: Grad 1 profil type of clump "<< lens->name << " unknown : "<< lens->type << std::endl;
break;
};
return result;
}
/**** usefull functions for PIEMD profile : see old lenstool ****/
/** I*w,v=0.5 Kassiola & Kovner, 1993 PIEMD, paragraph 4.1
*
* Global variables used :
* - none
*/
static complex piemd_1derivatives_ci05(double x, double y, double eps, double rc)
{
double sqe, cx1, cxro, cyro, rem2;
complex zci, znum, zden, zis, zres;
double norm;
sqe = sqrt(eps);
cx1 = (1. - eps) / (1. + eps);
cxro = (1. + eps) * (1. + eps);
cyro = (1. - eps) * (1. - eps);
rem2 = x * x / cxro + y * y / cyro;
/*zci=cpx(0.,-0.5*(1.-eps*eps)/sqe);
znum=cpx(cx1*x,(2.*sqe*sqrt(rc*rc+rem2)-y/cx1));
zden=cpx(x,(2.*rc*sqe-y));
zis=pcpx(zci,lncpx(dcpx(znum,zden)));
zres=pcpxflt(zis,b0);*/
// --> optimized code
zci.re = 0;
zci.im = -0.5 * (1. - eps * eps) / sqe;
znum.re = cx1 * x;
znum.im = 2.*sqe * sqrt(rc * rc + rem2) - y / cx1;
zden.re = x;
zden.im = 2.*rc * sqe - y;
norm = zden.re * zden.re + zden.im * zden.im; // zis = znum/zden
zis.re = (znum.re * zden.re + znum.im * zden.im) / norm;
zis.im = (znum.im * zden.re - znum.re * zden.im) / norm;
norm = zis.re;
zis.re = log(sqrt(norm * norm + zis.im * zis.im)); // ln(zis) = ln(|zis|)+i.Arg(zis)
zis.im = atan2(zis.im, norm);
// norm = zis.re;
zres.re = zci.re * zis.re - zci.im * zis.im; // Re( zci*ln(zis) )
zres.im = zci.im * zis.re + zis.im * zci.re; // Im( zci*ln(zis) )
//zres.re = zis.re*b0;
//zres.im = zis.im*b0;
return(zres);
}
/// Useful functions
// changes the coordinates of point P into a new basis (rotation of angle theta)
// y' y x'
// * | /
// * | / theta
// * | /
// *|--------->x
static struct point rotateCoordinateSystem(struct point P, double theta)
{
struct point Q;
Q.x = P.x*cos(theta) + P.y*sin(theta);
Q.y = P.y*cos(theta) - P.x*sin(theta);
return(Q);
}
/** @brief This module function calculates profile depended information like the impactparameter b0 and the potential ellipticity epot
*
* @param lens: mass distribution for which to calculate parameters
*/
void module_readParameters_calculatePotentialparameter(Potential *lens){
switch (lens->type)
{
case(5): /*Elliptical Isothermal Sphere*/
//impact parameter b0
lens->b0 = 4* pi_c2 * lens->vdisp * lens->vdisp ;
//ellipticity_potential
lens->ellipticity_potential = lens->ellipticity/3 ;
break;
case(8): /* PIEMD */
//impact parameter b0
lens->b0 = 6.*pi_c2 * lens->vdisp * lens->vdisp;
//ellipticity_parameter
if ( lens->ellipticity == 0. && lens->ellipticity_potential != 0. ){
// emass is (a2-b2)/(a2+b2)
lens->ellipticity = 2.*lens->ellipticity_potential / (1. + lens->ellipticity_potential * lens->ellipticity_potential);
//printf("1 : %f %f \n",lens->ellipticity,lens->ellipticity_potential);
}
else if ( lens->ellipticity == 0. && lens->ellipticity_potential == 0. ){
lens->ellipticity_potential = 0.00001;
//printf("2 : %f %f \n",lens->ellipticity,lens->ellipticity_potential);
}
else{
// epot is (a-b)/(a+b)
lens->ellipticity_potential = (1. - sqrt(1 - lens->ellipticity * lens->ellipticity)) / lens->ellipticity;
//printf("3 : %f %f \n",lens->ellipticity,lens->ellipticity_potential);
}
break;
default:
std::cout << "ERROR: LENSPARA profil type of clump "<< lens->name << " unknown : "<< lens->type << std::endl;
//printf( "ERROR: LENSPARA profil type of clump %s unknown : %d\n",lens->name, lens->type);
break;
};
}
Event Timeline
Log In to Comment