Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120551347
gradient.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jul 5, 04:23
Size
15 KB
Mime Type
text/x-c
Expires
Mon, Jul 7, 04:23 (2 d)
Engine
blob
Format
Raw Data
Handle
27205455
Attached To
R1448 Lenstool-HPC
gradient.cpp
View Options
#include <iostream>
#include <string.h>
//#include <cuda_runtime.h>
#include <math.h>
#include <sys/time.h>
#include <fstream>
#include <immintrin.h>
//#include "simd_math.h"
#include "gradient.hpp"
#include "structure.h"
//#include "iacaMarks.h"
//#define __INV RCP
//#define __INV RCP_1NR
//#define __INV RCP_2NR
//#define __SQRT _mm256_sqrt_pd
//#define __SQRT SQRT
//#define __SQRT SQRT_1NR
//#define __SQRT SQRT_2NR
void module_readParameters_calculatePotentialparameter_SOA(Potential_SOA *lens, int ii)
{
//std::cout << "module_readParameters_calculatePotentialparameter..." << std::endl;
switch (lens->type[ii])
{
case(5): /*Elliptical Isothermal Sphere*/
//impact parameter b0
lens->b0[ii] = 4* pi_c2 * lens->vdisp[ii] * lens->vdisp[ii] ;
//ellipticity_potential
lens->ellipticity_potential[ii] = lens->ellipticity[ii]/3 ;
break;
case(8): /* PIEMD */
//impact parameter b0
lens->b0[ii] = 6.*pi_c2 * lens->vdisp[ii] * lens->vdisp[ii];
//ellipticity_parameter
if ( lens->ellipticity[ii] == 0. && lens->ellipticity_potential[ii] != 0. ){
// emass is (a2-b2)/(a2+b2)
lens->ellipticity[ii] = 2.*lens->ellipticity_potential[ii] / (1. + lens->ellipticity_potential[ii] * lens->ellipticity_potential[ii]);
//printf("1 : %f %f \n",lens->ellipticity[ii],lens->ellipticity_potential[ii]);
}
else if ( lens->ellipticity[ii] == 0. && lens->ellipticity_potential[ii] == 0. ){
lens->ellipticity_potential[ii] = 0.00001;
//printf("2 : %f %f \n",lens->ellipticity[ii],lens->ellipticity_potential[ii]);
}
else{
// epot is (a-b)/(a+b)
lens->ellipticity_potential[ii] = (1. - sqrt(1 - lens->ellipticity[ii] * lens->ellipticity[ii])) / lens->ellipticity[ii];
//printf("3 : %f %f \n",lens->ellipticity[ii],lens->ellipticity_potential[ii]);
}
break;
default:
std::cout << "ERROR: LENSPARA profil type of clump "<< lens->name << " unknown : "<< lens->type << std::endl;
//printf( "ERROR: LENSPARA profil type of clump %s unknown : %d\n",lens->name, lens->type);
break;
};
}
//
/**@brief Return the gradient of the projected lens potential for one clump
* !!! You have to multiply by dlsds to obtain the true gradient
* for the expressions, see the papers : JP Kneib & P Natarajan, Cluster Lenses, The Astronomy and Astrophysics Review (2011) for 1 and 2
* and JP Kneib PhD (1993) for 3
*
* @param pImage point where the result is computed in the lens plane
* @param lens mass distribution
*/
//
/// Useful functions
//
//static
complex
piemd_1derivatives_ci05(double x, double y, double eps, double rc)
{
double sqe, cx1, cxro, cyro, rem2;
complex zci, znum, zden, zis, zres;
double norm;
//
//std::cout << "piemd_lderivatives" << std::endl;
sqe = sqrt(eps);
cx1 = (1. - eps) / (1. + eps);
cxro = (1. + eps) * (1. + eps);
cyro = (1. - eps) * (1. - eps);
//
rem2 = x * x / cxro + y * y / cyro;
/*zci=cpx(0.,-0.5*(1.-eps*eps)/sqe);
znum=cpx(cx1*x,(2.*sqe*sqrt(rc*rc+rem2)-y/cx1));
zden=cpx(x,(2.*rc*sqe-y));
zis=pcpx(zci,lncpx(dcpx(znum,zden)));
zres=pcpxflt(zis,b0);*/
// --> optimized code
zci.re = 0;
zci.im = -0.5 * (1. - eps * eps) / sqe;
znum.re = cx1 * x;
znum.im = 2.*sqe * sqrt(rc * rc + rem2) - y / cx1;
zden.re = x;
zden.im = 2.*rc * sqe - y;
norm = zden.re * zden.re + zden.im * zden.im; // zis = znum/zden
zis.re = (znum.re * zden.re + znum.im * zden.im) / norm;
zis.im = (znum.im * zden.re - znum.re * zden.im) / norm;
norm = zis.re;
zis.re = log(sqrt(norm * norm + zis.im * zis.im)); // ln(zis) = ln(|zis|)+i.Arg(zis)
zis.im = atan2(zis.im, norm);
// norm = zis.re;
zres.re = zci.re * zis.re - zci.im * zis.im; // Re( zci*ln(zis) )
zres.im = zci.im * zis.re + zis.im * zci.re; // Im( zci*ln(zis) )
//
//zres.re = zis.re*b0;
//zres.im = zis.im*b0;
//
return(zres);
}
//
//// changes the coordinates of point P into a new basis (rotation of angle theta)
//// y' y x'
//// * | /
//// * | / theta
//// * | /
//// *|--------->x
//
static struct point rotateCoordinateSystem(struct point P, double theta)
{
struct point Q;
Q.x = P.x*cos(theta) + P.y*sin(theta);
Q.y = P.y*cos(theta) - P.x*sin(theta);
return(Q);
}
__attribute__((noinline))
static struct point
grad_halo(const struct point *pImage, const struct Potential *lens)
{
struct point true_coord, true_coord_rotation, result;
double R, angular_deviation;
complex zis;
//
//std::cout << "grad_halo..." << lens->type << std::endl;
result.x = result.y = 0.;
//
/*positionning at the potential center*/
// Change the origin of the coordinate system to the center of the clump
true_coord.x = pImage->x - lens->position.x;
true_coord.y = pImage->y - lens->position.y;
//
switch (lens->type)
{
case(5): /*Elliptical Isothermal Sphere*/
/*rotation of the coordiante axes to match the potential axes*/
true_coord_rotation = rotateCoordinateSystem(true_coord, lens->ellipticity_angle);
//
R=sqrt(true_coord_rotation.x*true_coord_rotation.x*(1 - lens->ellipticity/3.) + true_coord_rotation.y*true_coord_rotation.y*(1 + lens->ellipticity/3.)); //ellippot = ellipmass/3
result.x = (1 - lens->ellipticity/3.)*lens->b0*true_coord_rotation.x/(R);
result.y = (1 + lens->ellipticity/3.)*lens->b0*true_coord_rotation.y/(R);
break;
case(8): /* PIEMD */
/*rotation of the coordiante axes to match the potential axes*/
true_coord_rotation = rotateCoordinateSystem(true_coord, lens->ellipticity_angle);
/*Doing something....*/
zis = piemd_1derivatives_ci05(true_coord_rotation.x, true_coord_rotation.y, lens->ellipticity_potential, lens->rcore);
//
result.x = lens->b0*zis.re;
result.y = lens->b0*zis.im;
break;
default:
std::cout << "ERROR: Grad 1 profil type of clump "<< lens->name << " unknown : "<< lens->type << std::endl;
break;
};
return result;
}
//
//
//
struct point module_potentialDerivatives_totalGradient(const runmode_param *runmode, const struct point *pImage, const struct Potential *lens)
{
struct point grad, clumpgrad;
grad.x = 0;
grad.y = 0;
//std::cout << "nhalos = " << runmode->nhalos << std::endl;
for(int i = 0; i < runmode->nhalos; i++)
{
clumpgrad = grad_halo(pImage, &lens[i]); //compute gradient for each clump separately
//nan check
//std::cout << clumpgrad.x << " " << clumpgrad.y << std::endl;
if(clumpgrad.x == clumpgrad.x or clumpgrad.y == clumpgrad.y)
{
// add the gradients
grad.x += clumpgrad.x;
grad.y += clumpgrad.y;
}
}
//
return(grad);
}
struct point grad_halo_piemd_SOA(const struct point *pImage, int iterator, const struct Potential_SOA *lens)
{
struct point clumpgrad;
clumpgrad.x = 0;
clumpgrad.y = 0;
struct point true_coord, true_coord_rotation; //, result;
//double R, angular_deviation;
complex zis;
//
//result.x = result.y = 0.;
//
true_coord.x = pImage->x - lens->position_x[iterator];
true_coord.y = pImage->y - lens->position_y[iterator];
//
//std::cout << true_coord.x <<" "<< true_coord.y << std::endl;
//
// Change the origin of the coordinate system to the center of the clump
true_coord_rotation = rotateCoordinateSystem(true_coord, lens->ellipticity_angle[iterator]);
// std::cout << i << ": " << true_coord.x << " " << true_coord.y << " -> "
// << true_coord_rotation.x << " " << true_coord_rotation.y << std::endl;
//
//double sqe, cx1, cxro, cyro, rem2;
//
double x = true_coord_rotation.x;
double y = true_coord_rotation.y;
double eps = lens->ellipticity_potential[iterator];
double rc = lens->rcore[iterator];
//
//std::cout << "piemd_lderivatives" << std::endl;
//
double sqe = sqrt(eps);
//
double cx1 = (1. - eps)/(1. + eps);
double cxro = (1. + eps)*(1. + eps);
double cyro = (1. - eps)*(1. - eps);
//
double rem2 = x*x/cxro + y*y/cyro;
//
//zci=cpx(0.,-0.5*(1.-eps*eps)/sqe);
//znum=cpx(cx1*x,(2.*sqe*sqrt(rc*rc+rem2)-y/cx1));
//zden=cpx(x,(2.*rc*sqe-y));
//zis=pcpx(zci,lncpx(dcpx(znum,zden)));
//zres=pcpxflt(zis,b0);
// --> optimized code
complex zci, znum, zden, zres;
double norm;
//
zci.re = 0;
zci.im = -0.5*(1. - eps*eps)/sqe;
//
znum.re = cx1*x;
znum.im = 2.*sqe*sqrt(rc*rc + rem2) - y/cx1;
//
zden.re = x;
zden.im = 2.*rc*sqe - y;
norm = (zden.re*zden.re + zden.im*zden.im); // zis = znum/zden
//
zis.re = (znum.re*zden.re + znum.im*zden.im)/norm;
zis.im = (znum.im*zden.re - znum.re*zden.im)/norm;
norm = zis.re;
zis.re = log(sqrt(norm*norm + zis.im*zis.im)); // ln(zis) = ln(|zis|)+i.Arg(zis)
zis.im = atan2(zis.im, norm);
// norm = zis.re;
zres.re = zci.re*zis.re - zci.im*zis.im; // Re( zci*ln(zis) )
zres.im = zci.im*zis.re + zis.im*zci.re; // Im( zci*ln(zis) )
//
zis.re = zres.re;
zis.im = zres.im;
//
//zres.re = zis.re*b0;
//zres.im = zis.im*b0;
//
//
clumpgrad.x = lens->b0[iterator]*zis.re;
clumpgrad.y = lens->b0[iterator]*zis.im;
//nan check
//
return(clumpgrad);
}
struct point grad_halo_sis_SOA(const struct point *pImage, int iterator, const struct Potential_SOA *lens)
{
struct point true_coord, true_coord_rotation, result;
double R, angular_deviation;
complex zis;
result.x = result.y = 0.;
/*positionning at the potential center*/
true_coord.x = pImage->x - lens->position_x[iterator]; // Change the origin of the coordinate system to the center of the clump
true_coord.y = pImage->y - lens->position_y[iterator];
/*Elliptical Isothermal Sphere*/
/*rotation of the coordiante axes to match the potential axes*/
true_coord_rotation = rotateCoordinateSystem(true_coord, lens->ellipticity_angle[iterator]);
R=sqrt(true_coord_rotation.x*true_coord_rotation.x*(1-lens->ellipticity[iterator]/3.)+true_coord_rotation.y*true_coord_rotation.y*(1+lens->ellipticity[iterator]/3.)); //ellippot = ellipmass/3
result.x=(1-lens->ellipticity[iterator]/3.)*lens->b0[iterator]*true_coord_rotation.x/(R);
result.y=(1+lens->ellipticity[iterator]/3.)*lens->b0[iterator]*true_coord_rotation.y/(R);
return result;
}
struct point module_potentialDerivatives_totalGradient_SOA(const int *Nlens, const struct point *pImage, const struct Potential_SOA *lens)
{
struct point grad, clumpgrad;
grad.x=0;
grad.y=0;
//This here could be done with function pointer to better acomodate future ass distributions functions
// However I'm unsure of the time of function pointers -> ask gilles
//for the moment lens and Nlens is organised the following way : 1. SIS, 2. PIEMD
//SIS is the first
for(int i=0; i<Nlens[0]; i++){
clumpgrad=grad_halo_sis_SOA(pImage,i,&lens[0]); //compute gradient for each clump separately
if(clumpgrad.x == clumpgrad.x or clumpgrad.y == clumpgrad.y){ //nan check
grad.x+=clumpgrad.x;
grad.y+=clumpgrad.y;
} // add the gradients
}
//PIEMD is the second
for(int i=0; i<Nlens[1]; i++){
clumpgrad=grad_halo_piemd_SOA(pImage,i,&lens[1]); //compute gradient for each clump separately
if(clumpgrad.x == clumpgrad.x or clumpgrad.y == clumpgrad.y){ //nan check
grad.x+=clumpgrad.x;
grad.y+=clumpgrad.y;
//printf(" %f %f %f %f %f %f \n", grad.x,grad.y, clumpgrad.x,clumpgrad.y,pImage->x,pImage->y);
} // add the gradients,
}
//printf(" %f %f \n", grad.x,grad.y);
return(grad);
}
struct point module_potentialDerivatives_piemd_peelGradient_SOA(const struct point *pImage, const struct Potential_SOA *lens, int shalos, int nhalos)
{
struct point grad, clumpgrad;
grad.x = 0;
grad.y = 0;
//
for(int i = shalos; i < nhalos; i++)
{
//IACA_START;
//
struct point true_coord, true_coord_rot; //, result;
//double R, angular_deviation;
complex zis;
//
//result.x = result.y = 0.;
//
true_coord.x = pImage->x - lens->position_x[i];
true_coord.y = pImage->y - lens->position_y[i];
/*positionning at the potential center*/
// Change the origin of the coordinate system to the center of the clump
true_coord_rot = rotateCoordinateSystem(true_coord, lens->ellipticity_angle[i]);
//
double x = true_coord_rot.x;
double y = true_coord_rot.y;
double eps = lens->ellipticity_potential[i];
double rc = lens->rcore[i];
//
//std::cout << "piemd_lderivatives" << std::endl;
//
double sqe = sqrt(eps);
//
double cx1 = (1. - eps)/(1. + eps);
double cxro = (1. + eps)*(1. + eps);
double cyro = (1. - eps)*(1. - eps);
//
double rem2 = x*x/cxro + y*y/cyro;
//
complex zci, znum, zden, zres;
double norm;
//
zci.re = 0;
zci.im = -0.5*(1. - eps*eps)/sqe;
//
znum.re = cx1*x;
znum.im = 2.*sqe*sqrt(rc*rc + rem2) - y/cx1;
//
zden.re = x;
zden.im = 2.*rc*sqe - y;
norm = (zden.re*zden.re + zden.im*zden.im); // zis = znum/zden
//
zis.re = (znum.re*zden.re + znum.im*zden.im)/norm;
zis.im = (znum.im*zden.re - znum.re*zden.im)/norm;
norm = zis.re;
zis.re = log(sqrt(norm*norm + zis.im*zis.im)); // ln(zis) = ln(|zis|)+i.Arg(zis)
zis.im = atan2(zis.im, norm);
// norm = zis.re;
zres.re = zci.re*zis.re - zci.im*zis.im; // Re( zci*ln(zis) )
zres.im = zci.im*zis.re + zis.im*zci.re; // Im( zci*ln(zis) )
//
zis.re = zres.re;
zis.im = zres.im;
//
//zres.re = zis.re*b0;
//zres.im = zis.im*b0;
// rotation
clumpgrad.x = zis.re;
clumpgrad.y = zis.im;
clumpgrad = rotateCoordinateSystem(clumpgrad, -lens->ellipticity_angle[i]);
//
clumpgrad.x = lens->b0[i]*clumpgrad.x;
clumpgrad.y = lens->b0[i]*clumpgrad.y;
//
//clumpgrad.x = lens->b0[i]*zis.re;
//clumpgrad.y = lens->b0[i]*zis.im;
//nan check
if(clumpgrad.x == clumpgrad.x or clumpgrad.y == clumpgrad.y)
{
// add the gradients
grad.x += clumpgrad.x;
grad.y += clumpgrad.y;
}
}
//IACA_END;
//
return(grad);
}
struct point module_potentialDerivatives_totalGradient_SOA_GPU(const int *Nlens, const struct point *pImage, const struct Potential_SOA *lens)
{
struct point grad, clumpgrad;
grad.x=0;
grad.y=0;
//This here could be done with function pointer to better acomodate future ass distributions functions
// However I'm unsure of the time of function pointers -> ask gilles
//for the moment lens and Nlens is organised the following way : 1. SIS, 2. PIEMD
//SIS is the first
for(int i=0; i<Nlens[0]; i++){
clumpgrad=grad_halo_sis_SOA(pImage,i,&lens[0]); //compute gradient for each clump separately
if(clumpgrad.x == clumpgrad.x or clumpgrad.y == clumpgrad.y){ //nan check
grad.x+=clumpgrad.x;
grad.y+=clumpgrad.y;
} // add the gradients
}
//PIEMD is the second
clumpgrad=grad_halo_piemd_SOA_GPU(pImage,Nlens[1],&lens[1]); //compute gradient for each clump separately
if(clumpgrad.x == clumpgrad.x or clumpgrad.y == clumpgrad.y){ //nan check
grad.x+=clumpgrad.x;
grad.y+=clumpgrad.y;
}
return(grad);
}
Event Timeline
Log In to Comment