Page MenuHomec4science

main.cpp
No OneTemporary

File Metadata

Created
Tue, Nov 12, 01:20

main.cpp

/**
* @file main.cpp
* @Author Christoph Schaaefer, EPFL (christophernstrerne.schaefer@epfl.ch)
* @date October 2016
* @brief Benchmark for gradhalo function
*/
#include <iostream>
#include <iomanip>
#include <string.h>
#include <math.h>
#include <sys/time.h>
#include <fstream>
#include <sys/stat.h>
#include <unistd.h>
//
//#include <mm_malloc.h>
#include <omp.h>
//
//#include <cuda_runtime.h>
#include <structure_hpc.hpp>
//#include <cuda.h>
#include "timer.h"
#include "gradient.hpp"
#include "chi_CPU.hpp"
#include "module_cosmodistances.hpp"
#include "module_readParameters.hpp"
#include "grid_gradient2_CPU.hpp"
#ifdef __WITH_GPU
#include "grid_gradient_GPU.cuh"
#include "grid_gradient2_GPU.cuh"
//#include "gradient2_GPU.cuh"
#endif
#ifdef __WITH_LENSTOOL
#include "setup.hpp"
#warning "linking with libtool..."
#include<fonction.h>
#include<constant.h>
#include<dimension.h>
#include<structure.h>
//
//
struct g_mode M;
struct g_pot P[NPOTFILE];
struct g_pixel imFrame, wFrame, ps, PSF;
struct g_cube cubeFrame;
struct g_dyn Dy; // //TV
//
struct g_source S;
struct g_image I;
struct g_grille G;
struct g_msgrid H; // multi-scale grid
struct g_frame F;
struct g_large L;
struct g_cosmo C;
struct g_cline CL;
struct g_observ O;
struct pot lens[NLMAX];
struct pot lmin[NLMAX], lmax[NLMAX], prec[NLMAX];
struct g_cosmo clmin, clmax; /*cosmological limits*/
struct galaxie smin[NFMAX], smax[NFMAX]; // limits on source parameters
struct ipot ip;
struct MCarlo mc;
struct vfield vf;
struct vfield vfmin,vfmax; // limits on velocity field parameters
struct cline cl[NIMAX];
lensdata *lens_table;
//
int block[NLMAX][NPAMAX]; /*switch for the lens optimisation*/
int cblock[NPAMAX]; /*switch for the cosmological optimisation*/
int sblock[NFMAX][NPAMAX]; /*switch for the source parameters*/
int vfblock[NPAMAX]; /*switch for the velocity field parameters*/
double excu[NLMAX][NPAMAX];
double excd[NLMAX][NPAMAX];
/* supplments tableaux de valeurs pour fonctions g pour Einasto
* * Ce sont trois variables globales qu'on pourra utiliser dans toutes les fonctions du projet
* */
#define CMAX 20
#define LMAX 80
float Tab1[LMAX][CMAX];
float Tab2[LMAX][CMAX];
float Tab3[LMAX][CMAX];
int nrline, ntline, flagr, flagt;
long int narclet;
struct point gimage[NGGMAX][NGGMAX], gsource_global[NGGMAX][NGGMAX];
struct biline radial[NMAX], tangent[NMAX];
struct galaxie arclet[NAMAX], source[NFMAX], image[NFMAX][NIMAX];
struct galaxie cimage[NFMAX];
struct pointgal gianti[NPMAX][NIMAX];
struct point SC;
double elix;
double alpha_e;
double *v_xx;
double *v_yy;
double **map_p;
double **tmp_p;
double **map_axx;
double **map_ayy;
#endif
void
gradient_grid_GPU_sorted(type_t *grid_grad_x, type_t *grid_grad_y, const struct grid_param *frame, const struct Potential_SOA *lens, int Nlens, int nbgridcells);
//
//
int module_readCheckInput_readInput(int argc, char *argv[])
{
/// check if there is a correct number of arguments, and store the name of the input file in infile
char* infile;
struct stat file_stat;
// If we do not have 3 arguments, stop
if ( argc != 3 )
{
fprintf(stderr, "\nUnexpected number of arguments\n");
fprintf(stderr, "\nUSAGE:\n");
fprintf(stderr, "lenstool input_file output_directorypath [-n]\n\n");
exit(-1);
}
else if ( argc == 3 )
infile=argv[1];
std::ifstream ifile(infile,std::ifstream::in); // Open the file
int ts = (int) time (NULL);
char buffer[10];
std::stringstream ss;
ss << ts;
std::string trimstamp = ss.str();
//
std::string outdir = argv[2];
outdir += "-";
outdir += trimstamp;
std::cout << outdir << std::endl;
// check whether the output directory already exists
if (stat(outdir.c_str(), &file_stat) < 0){
mkdir(outdir.c_str(), S_IRUSR | S_IWUSR | S_IXUSR | S_IRGRP | S_IWGRP | S_IXGRP | S_IROTH );
}
else {
printf("Error : Directory %s already exists. Specify a non existing directory.\n",argv[2]);
exit(-1);
}
// check whether the input file exists. If it could not be opened (ifile = 0), it does not exist
if(ifile){
ifile.close();
}
else{
printf("The file %s does not exist, please specify a valid file name\n",infile);
exit(-1);
}
return 0;
}
//
//
//
int main(int argc, char *argv[])
{
//
// Setting Up the problem
//
// This module function reads the terminal input when calling LENSTOOL and checks that it is correct
// Otherwise it exits LENSTOOL
//
char cwd[1024];
if (getcwd(cwd, sizeof(cwd)) != NULL)
fprintf(stdout, "Current working dir: %s\n", cwd);
//
module_readCheckInput_readInput(argc, argv);
//
// This module function reads the cosmology parameters from the parameter file
// Input: struct cosmologicalparameters cosmology, parameter file
// Output: Initialized cosmology struct
cosmo_param cosmology; // Cosmology struct to store the cosmology data from the file
std::string inputFile = argv[1]; // Input file
module_readParameters_readCosmology(inputFile, cosmology);
//
// This module function reads the runmode paragraph and the number of sources, arclets, etc. in the parameter file.
// The runmode_param stores the information of what exactly the user wants to do with lenstool.
struct runmode_param runmode;
module_readParameters_readRunmode(inputFile, &runmode);
module_readParameters_debug_cosmology(runmode.debug, cosmology);
module_readParameters_debug_runmode(runmode.debug, runmode);
//
//=== Declaring variables
//
struct grid_param frame;
struct galaxy images[runmode.nimagestot];
struct galaxy sources[runmode.nsets];
struct Potential_SOA lenses_SOA_table[NTYPES];
struct Potential_SOA lenses_SOA;
struct cline_param cline;
struct potfile_param potfile;
struct potentialoptimization host_potentialoptimization[runmode.nhalos];
int nImagesSet[runmode.nsets]; // Contains the number of images in each set of images
// This module function reads in the potential form and its parameters (e.g. NFW)
// Input: input file
// Output: Potentials and its parameters
module_readParameters_PotentialSOA_direct(inputFile, &lenses_SOA, runmode.nhalos, runmode.n_tot_halos, cosmology);
module_readParameters_debug_potential_SOA(1, lenses_SOA, runmode.nhalos);
//std::cerr <<"b0: "<< lenses_SOA.b0[0] << std::endl;
//module_readParameters_Potential(inputFile, lenses, runmode.nhalos);
//Converts to SOA
//module_readParameters_PotentialSOA(inputFile, lenses, &lenses_SOA, runmode.nhalos);
//module_readParameters_debug_potential(runmode.debug, lenses, runmode.nhalos);
// This module function reads in the potfiles parameters
// Input: input file
// Output: Potentials from potfiles and its parameters
if (runmode.potfile == 1 )
{
module_readParameters_readpotfiles_param(inputFile, &potfile, cosmology);
module_readParameters_debug_potfileparam(1, &potfile);
module_readParameters_readpotfiles_SOA(&runmode, &cosmology,&potfile,&lenses_SOA);
module_readParameters_debug_potential_SOA(1, lenses_SOA, runmode.n_tot_halos);
}
//
// This module function reads in the grid form and its parameters
// Input: input file
// Output: grid and its parameters
//
module_readParameters_Grid(inputFile, &frame);
//
//
//
//
std::cout << "--------------------------" << std::endl << std::endl; fflush(stdout);
double t_1,t_2,t_3,t_4;
//
//
//
#ifdef __WITH_LENSTOOL
printf("Setting up lenstool using %d lenses...", runmode.n_tot_halos); fflush(stdout);
convert_to_LT(&lenses_SOA, runmode.n_tot_halos);
printf("ok\n");
#endif
//
// Lenstool-CPU Grid-Gradient
//
#include "gradient2.hpp"
//Setting Test:
type_t dx, dy;
int grid_dim = runmode.nbgridcells;
//
dx = (frame.xmax - frame.xmin)/(runmode.nbgridcells-1);
dy = (frame.ymax - frame.ymin)/(runmode.nbgridcells-1);
//
//
//
#ifdef __WITH_LENSTOOL
std::cout << " CPU Test Lenstool ... ";
matrix *grid_grad2;
grid_grad2 = (matrix *) malloc((int) (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(matrix));
double t_lt = -myseconds();
#pragma omp parallel for
//#pragma omp parallel for if (omp_get_num_threads() > 1) schedule(guided, 100)
for (int jj = 0; jj < runmode.nbgridcells; ++jj){
for (int ii = 0; ii < runmode.nbgridcells; ++ii)
{
// (index < grid_dim*grid_dim)
struct matrix Grad2;
int index = jj*runmode.nbgridcells + ii;
grid_grad2[index].a = 0.;
grid_grad2[index].b = 0.;
grid_grad2[index].c = 0.;
grid_grad2[index].d = 0.;
struct point image_point;
image_point.x = frame.xmin + ii*dx;
image_point.y = frame.ymin + jj*dy;
//std::cerr << "*" << image_point.x << " "<<image_point.y << std::endl;
for (int lens = 0; lens < runmode.n_tot_halos; ++lens)
{
Grad2 = e_grad2_pot(&image_point, lens);
//
grid_grad2[index].a += Grad2.a;
grid_grad2[index].b += Grad2.b;
grid_grad2[index].c += Grad2.c;
grid_grad2[index].d += Grad2.d;
//std::cerr << "**" << Grad2.a << Grad2.b << Grad2.c << Grad2.d << std::endl;
}
}
}
t_lt += myseconds();
std::cout << " Time = " << t_lt << " s." << std::endl;
#endif
//
matrix* grid_gradient2_cpu = (matrix *) malloc((int) (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(matrix));
memset(grid_gradient2_cpu, 0, (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(matrix));
std::cout << " CPU Test lenstool_hpc... ";
//
t_1 = -myseconds();
int Nstat = 1;
for(int ii = 0; ii < Nstat; ++ii) {
gradient2_grid_CPU(grid_gradient2_cpu, &frame, &lenses_SOA, runmode.n_tot_halos, grid_dim);
}
t_1 += myseconds();
//
std::cout << " Time = " << std::setprecision(15) << t_1 << std::endl;
#if 1
#ifdef __WITH_GPU
// GPU test
std::cout << " GPU Test... ";
type_t* grid_gradient_a_gpu = (type_t *) malloc((int) (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(type_t));
type_t* grid_gradient_b_gpu = (type_t *) malloc((int) (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(type_t));
type_t* grid_gradient_c_gpu = (type_t *) malloc((int) (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(type_t));
type_t* grid_gradient_d_gpu = (type_t *) malloc((int) (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(type_t));
//
memset(grid_gradient_a_gpu, 0, (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(type_t));
memset(grid_gradient_b_gpu, 0, (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(type_t));
memset(grid_gradient_c_gpu, 0, (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(type_t));
memset(grid_gradient_d_gpu, 0, (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(type_t));
//
grid_gradient_a_gpu = (type_t *) malloc((int) (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(type_t));
grid_gradient_b_gpu = (type_t *) malloc((int) (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(type_t));
grid_gradient_c_gpu = (type_t *) malloc((int) (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(type_t));
grid_gradient_d_gpu = (type_t *) malloc((int) (runmode.nbgridcells) * (runmode.nbgridcells) * sizeof(type_t));
gradient2_grid_GPU(grid_gradient_a_gpu, grid_gradient_b_gpu,grid_gradient_c_gpu, grid_gradient_d_gpu, &frame, &lenses_SOA, runmode.n_tot_halos, grid_dim);
t_2 = -myseconds();
for(int ii = 0; ii < Nstat; ++ii) {
gradient2_grid_GPU(grid_gradient_a_gpu, grid_gradient_b_gpu,grid_gradient_c_gpu, grid_gradient_d_gpu, &frame, &lenses_SOA, runmode.n_tot_halos, grid_dim);
}
t_2 += myseconds();
std::cerr << "**" << grid_gradient_a_gpu[0] << grid_gradient_b_gpu[0] << grid_gradient_c_gpu[0] << grid_gradient_d_gpu[0] << std::endl;
std::cout << " Time " << std::setprecision(15) << t_2 << std::endl;
#endif
std::ofstream myfile;
#ifdef __WITH_LENSTOOL
{
type_t norm_a = 0.;
type_t norm_b = 0.;
type_t norm_c = 0.;
type_t norm_d = 0.;
//
for (int ii = 0; ii < grid_dim*grid_dim; ++ii)
{
//
norm_a += (grid_grad2[ii].a - grid_gradient2_cpu[ii].a)*(grid_grad2[ii].a - grid_gradient2_cpu[ii].a);
norm_b += (grid_grad2[ii].b - grid_gradient2_cpu[ii].b)*(grid_grad2[ii].b - grid_gradient2_cpu[ii].b);
norm_c += (grid_grad2[ii].c - grid_gradient2_cpu[ii].c)*(grid_grad2[ii].c - grid_gradient2_cpu[ii].c);
norm_d += (grid_grad2[ii].d - grid_gradient2_cpu[ii].d)*(grid_grad2[ii].d - grid_gradient2_cpu[ii].d);
}
//
std::cout << " l2 difference norm cpu = " << std::setprecision(15) << norm_a << " " << std::setprecision(15) << norm_b << " " << std::setprecision(15) << norm_c << " " << std::setprecision(15) << norm_d << std::endl;
}
//
#if 1
#ifdef __WITH_GPU
{
type_t norm_a = 0.;
type_t norm_b = 0.;
type_t norm_c = 0.;
type_t norm_d = 0.;
//
for (int ii = 0; ii < grid_dim*grid_dim; ++ii)
{
//
norm_a += (grid_grad2[ii].a - grid_gradient_a_gpu[ii])*(grid_grad2[ii].a - grid_gradient_a_gpu[ii]);
norm_b += (grid_grad2[ii].b - grid_gradient_b_gpu[ii])*(grid_grad2[ii].b - grid_gradient_b_gpu[ii]);
norm_c += (grid_grad2[ii].c - grid_gradient_c_gpu[ii])*(grid_grad2[ii].c - grid_gradient_c_gpu[ii]);
norm_d += (grid_grad2[ii].d - grid_gradient_d_gpu[ii])*(grid_grad2[ii].d - grid_gradient_d_gpu[ii]);
}
//
std::cout << " l2 difference norm gpu = " << std::setprecision(15) << norm_a << " " << std::setprecision(15) << norm_b << " " << std::setprecision(15) << norm_c << " " << std::setprecision(15) << norm_d << std::endl;
}
#endif
#endif
#endif
#endif
}

Event Timeline