Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F93015535
rfft.f
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 25, 14:33
Size
18 KB
Mime Type
text/x-fortran
Expires
Wed, Nov 27, 14:33 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22555509
Attached To
R1448 Lenstool-HPC
rfft.f
View Options
SUBROUTINE
FOURT
(
DATA
,
NN
,
NDIM
,
ISIGN
,
IFORM
,
WORK
)
implicit none
c
c
c
the
cooley
-
tukey
fast
fourier
transform
in
usasi
basic
fortran
c
c
transform
(
j1
,
j2
,,,,)
=
sum
(
data
(
i1
,
i2
,,,,)
*
w1
**
((
i1
-
1
)
*
(
j1
-
1
))
c
*
w2
**
((
i2
-
1
)
*
(
j2
-
1
))
*
,,,),
c
where
i1
and
j1
run
from
1
to
nn
(
1
)
and
w1
=
exp
(
isign
*
2
*
pi
=
c
sqrt
(
-
1
)
/
nn
(
1
)),
etc
.
there
is
no
limit
on
the
dimensionality
c
(
number
of
subscripts
)
of
the
data array
.
if
an
inverse
c
transform
(
isign
=+
1
)
is
performed
upon
an
array
of
transformed
c
(
isign
=-
1
)
data
,
the
original
data
will
reappear
.
c
multiplied
by
nn
(
1
)
*
nn
(
2
)
*
,,,
the
array
of
input
data
must
be
c
in
complex
format
.
however
,
if
all
imaginary
parts
are
zero
(
i
.
e
.
c
the
data
are
disguised
real
)
running
time
is
cut
up
to
forty
per
-
c
cent
.
(
for
fastest
transform
of
real
data
,
nn
(
1
)
should
be
even
.
)
c
the
transform
values
are
always
complex
and
are
returned
in
the
c
original
array
of
data
,
replacing
the
input
data
.
the
length
c
of
each
dimension
of
the
data array
may
be
any
integer
.
the
c
program
runs
faster
on
composite
integers
than
on
primes
,
and
is
c
particularly
fast
on
numbers
rich
in
factors
of
two
.
c
c
timing
is
in
fact
given
by
the
following
formula
.
let
ntot
be
the
c
total
number
of
points
(
real
or
complex
)
in
the
data array
,
that
c
is
,
ntot
=
nn
(
1
)
*
nn
(
2
)
*
...
decompose
ntot
into
its
prime
factors
,
c
such
as
2
**
k2
*
3
**
k3
*
5
**
k5
*
...
let
sum2
be
the
sum
of
all
c
the
factors
of
two
in
ntot
,
that
is
,
sum2
=
2
*
k2
.
let
sumf
be
c
the
sum
of
all
other
factors
of
ntot
,
that
is
,
sumf
=
3
*
k3
*
5
*
k5
*
..
c
the
time
taken
by
a
multidimensional
transform
on
these
ntot
data
c
is
t
=
t0
+
ntot
*
(
t1
+
t2
*
sum2
+
t3
*
sumf
)
.
on
the
cdc
3300
(
floating
c
point
add
time
=
six
microseconds
),
t
=
3000
+
ntot
*
(
600
+
40
*
sum2
+
c
175
*
sumf
)
microseconds
on
complex
data
.
c
c
implementation
of
the
definition
by
summation
will
run
in
a
time
c
proportional
to
ntot
*
(
nn
(
1
)
+
nn
(
2
)
+
...
)
.
for
highly
composite
ntot
c
the
savings
offered
by
this
program
can
be
dramatic
.
a
one
-
dimen
-
c
sional
array
4000
in
length
will
be
transformed
in
4000
*
(
600
+
c
40
*
(
2
+
2
+
2
+
2
+
2
)
+
175
*
(
5
+
5
+
5
))
=
1
4.5
seconds
versus
about
4000
*
c
4000
*
175
=
2800
seconds
for
the
straightforward
technique
.
c
c
the
fast
fourier
transform
places
three
restrictions
upon
the
c
data
.
c
1.
the
number
of
input
data
and
the
number
of
transform
values
c
must
be
the
same
.
c
2.
both
the
input
data
and
the
transform
values
must
represent
c
equispaced
points
in
their
respective
domains
of
time and
c
frequency
.
calling
these
spacings
deltat
and
deltaf
,
it
must
be
c
true
that
deltaf
=
2
*
pi
/
(
nn
(
i
)
*
deltat
)
.
of
course
,
deltat
need
not
c
be
the
same
for
every
dimension
.
c
3.
conceptually
at
least
,
the
input
data
and
the
transform
output
c
represent
single
cycles
of
periodic
functions
.
c
c
the
calling
sequence
is
--
c
call
fourt
(
data
,
nn
,
ndim
,
isign
,
iform
,
work
)
c
c
data
is
the
array
used
to
hold
the
real
and
imaginary
parts
c
of
the
data
on
input
and
the
transform
values
on
output
.
it
c
is
a
multidimensional
floating
point
array
,
with
the
real
and
c
imaginary
parts
of
a
datum
stored
immediately
adjacent
in
storage
c
(
such
as
fortran
iv
places
them
)
.
normal
fortran
ordering
is
c
expected
,
the
first
subscript
changing
fastest
.
the
dimensions
c
are
given
in
the
integer
array
nn
,
of
length
ndim
.
isign
is
-
1
c
to
indicate
a
forward
transform
(
exponential
sign
is
-
)
and
+
1
c
for
an
inverse
transform
(
sign
is
+
)
.
iform
is
+
1
if
the
data
are
c
complex
,
0
if
the
data
are
real
.
if
it
is
0
,
the
imaginary
c
parts
of
the
data
must
be
set
to
zero
.
as
explained
above
,
the
c
transform
values
are
always
complex
and
are
stored
in
array data
.
c
work
is
an
array
used
for
working
storage
.
it
is
floating
point
c
real
,
one
dimensional
of
length
equal
to
twice
the
largest
array
c
dimension
nn
(
i
)
that
is
not
a
power
of
two
.
if
all
nn
(
i
)
are
c
powers
of
two
,
it
is
not
needed
and
may
be
replaced
by
zero
in
the
c
calling
sequence
.
thus
,
for
a
one
-
dimensional
array
,
nn
(
1
)
odd
,
c
work
occupies
as
many
storage
locations
as
data
.
if
supplied
,
c
work
must
not
be
the
same
array
as
data
.
all
subscripts
of
all
c
arrays
begin
at
one
.
c
c
example
1.
three
-
dimensional
forward
fourier
transform
of
a
c
complex
array
dimensioned
32
by
25
by
13
in
fortran
iv
.
c
dimension data
(
32
,
25
,
13
),
work
(
50
),
nn
(
3
)
c
complex
data
c
data
nn
/
32
,
25
,
13
/
c
do
1
i
=
1
,
32
c
do
1
j
=
1
,
25
c
do
1
k
=
1
,
13
c
1
data
(
i
,
j
,
k
)
=
complex
value
c
call
fourt
(
data
,
nn
,
3
,
-
1
,
1
,
work
)
c
c
example
2.
one
-
dimensional
forward
transform
of
a
real
array
of
c
length
64
in
fortran
ii
,
c
dimension data
(
2
,
64
)
c
do
2
i
=
1
,
64
c
data
(
1
,
i
)
=
real
part
c
2
data
(
2
,
i
)
=
0.
c
call
fourt
(
data
,
64
,
1
,
-
1
,
0
,
0
)
c
c
there
are
no
error
messages
or
error
halts
in
this
program
.
the
c
program
returns
immediately
if
ndim
or any
nn
(
i
)
is
less
than
one
.
c
c
program
by
norman
brenner
from
the
basic
program
by
charles
c
rader
,
june
196
7.
the
idea
for
the
digit
reversal
was
c
suggested
by
ralph
alter
.
c
c
this
is
the
fastest
and
most
versatile
version
of
the
fft
known
c
to
the
author
.
a
program
called
four2
is
available
that
also
c
performs
the
fast
fourier
transform
and
is
written
in
usasi
basic
c
fortran
.
it
is
about
one
third
as
long and
restricts
the
c
dimensions
of
the
input
array
(
which
must
be
complex
)
to
be
powers
c
of
two
.
another
program
,
called
four1
,
is
one
tenth
as
long and
c
runs
two
thirds
as
fast
on
a
one
-
dimensional
complex
array
whose
c
length
is
a
power
of
two
.
c
c
reference
--
c
ieee
audio
transactions
(
june
1967
),
special
issue
on
the
fft
.
c
C
..
Scalar
Arguments
..
INTEGER
IFORM
,
ISIGN
,
NDIM
C
..
C
..
Array
Arguments
..
REAL
DATA
(
1
),
WORK
(
1
)
INTEGER
NN
(
1
)
C
..
C
..
Local
Scalars
..
REAL
DIFI
,
DIFR
,
OLDSI
,
OLDSR
,
RTHLF
,
SUMI
,
SUMR
,
T2I
,
T2R
,
T3I
,
T3R
,
T4I
,
+
T4R
,
TEMPI
,
TEMPR
,
THETA
,
TWOPI
,
TWOWR
,
U1I
,
U1R
,
U2I
,
U2R
,
U3I
,
U3R
,
+
U4I
,
U4R
,
W2I
,
W2R
,
W3I
,
W3R
,
WI
,
WR
,
WSTPI
,
WSTPR
INTEGER
I
,
I1
,
I1MAX
,
I1RNG
,
I2
,
I2MAX
,
I3
,
ICASE
,
ICONJ
,
IDIM
,
IDIV
,
IF
,
+
IFMIN
,
IFP1
,
IFP2
,
IMAX
,
IMIN
,
INON2
,
IPAR
,
IQUOT
,
IREM
,
J
,
J1
,
+
J1MAX
,
J1MIN
,
J2
,
J2MAX
,
J2MIN
,
J2RNG
,
J3
,
J3MAX
,
JMAX
,
JMIN
,
K1
,
K2
,
+
K3
,
K4
,
KDIF
,
KMIN
,
KSTEP
,
L
,
LMAX
,
M
,
MMAX
,
N
,
NHALF
,
NP0
,
NP1
,
NP1HF
,
+
NP1TW
,
NP2
,
NP2HF
,
NPREV
,
NTOT
,
NTWO
,
NWORK
C
..
C
..
Local
Arrays
..
INTEGER
IFACT
(
32
)
C
..
C
..
Intrinsic
Functions
..
INTRINSIC
COS
,
MAX0
,
REAL
,
SIN
C
..
C
..
Data
statements
..
DATA
NP0
/
0
/
,
NPREV
/
0
/
DATA
TWOPI
/
6.2831853071796
/
,
RTHLF
/
0.70710678118655
/
C
..
IF
(
NDIM
-
1
)
232
,
101
,
101
101
NTOT
=
2
DO
103
IDIM
=
1
,
NDIM
IF
(
NN
(
IDIM
))
232
,
232
,
102
102
NTOT
=
NTOT
*
NN
(
IDIM
)
103
CONTINUE
c
c
main
loop
for
each
dimension
c
NP1
=
2
DO
231
IDIM
=
1
,
NDIM
N
=
NN
(
IDIM
)
NP2
=
NP1
*
N
IF
(
N
-
1
)
232
,
230
,
104
c
c
is
n
a
power
of
two
and
if
not
,
what
are
its
factors
c
104
M
=
N
NTWO
=
NP1
IF
=
1
IDIV
=
2
105
IQUOT
=
M
/
IDIV
IREM
=
M
-
IDIV
*
IQUOT
IF
(
IQUOT
-
IDIV
)
113
,
106
,
106
106
IF
(
IREM
)
108
,
107
,
108
107
NTWO
=
NTWO
+
NTWO
IFACT
(
IF
)
=
IDIV
IF
=
IF
+
1
M
=
IQUOT
GO
TO
105
108
IDIV
=
3
INON2
=
IF
109
IQUOT
=
M
/
IDIV
IREM
=
M
-
IDIV
*
IQUOT
IF
(
IQUOT
-
IDIV
)
115
,
110
,
110
110
IF
(
IREM
)
112
,
111
,
112
111
IFACT
(
IF
)
=
IDIV
IF
=
IF
+
1
M
=
IQUOT
GO
TO
109
112
IDIV
=
IDIV
+
2
GO
TO
109
113
INON2
=
IF
IF
(
IREM
)
115
,
114
,
115
114
NTWO
=
NTWO
+
NTWO
GO
TO
116
115
IFACT
(
IF
)
=
M
c
c
separate
four
cases
--
c
1.
complex
transform
or
real
transform
for
the
4
th
,
9
th
,
etc
.
c
dimensions
.
c
2.
real
transform
for
the
2
nd
or
3
rd
dimension
.
method
--
c
transform
half
the
data
,
supplying
the
other
half
by
con
-
c
jugate
symmetry
.
c
3.
real
transform
for
the
1
st
dimension
,
n
odd
.
method
--
c
set
the
imaginary
parts
to
zero
.
c
4.
real
transform
for
the
1
st
dimension
,
n
even
.
method
--
c
transform
a
complex
array
of
length
n
/
2
whose
real
parts
c
are
the
even
numbered
real
values
and
whose
imaginary
parts
c
are
the
odd
numbered
real
values
.
separate
and
supply
c
the
second
half
by
conjugate
symmetry
.
c
116
ICASE
=
1
IFMIN
=
1
I1RNG
=
NP1
IF
(
IDIM
-
4
)
117
,
122
,
122
117
IF
(
IFORM
)
118
,
118
,
122
118
ICASE
=
2
I1RNG
=
NP0
*
(
1
+
NPREV
/
2
)
IF
(
IDIM
-
1
)
119
,
119
,
122
119
ICASE
=
3
I1RNG
=
NP1
IF
(
NTWO
-
NP1
)
122
,
122
,
120
120
ICASE
=
4
IFMIN
=
2
NTWO
=
NTWO
/
2
N
=
N
/
2
NP2
=
NP2
/
2
NTOT
=
NTOT
/
2
I
=
1
DO
121
J
=
1
,
NTOT
DATA
(
J
)
=
DATA
(
I
)
I
=
I
+
2
121
CONTINUE
c
c
shuffle
data
by
bit
reversal
,
since
n
=
2
**
k
.
as
the
shuffling
c
can
be
done
by
simple
interchange
,
no
working
array
is
needed
c
122
IF
(
NTWO
-
NP2
)
132
,
123
,
123
123
NP2HF
=
NP2
/
2
J
=
1
DO
131
I2
=
1
,
NP2
,
NP1
IF
(
J
-
I2
)
124
,
127
,
127
124
I1MAX
=
I2
+
NP1
-
2
DO
126
I1
=
I2
,
I1MAX
,
2
DO
125
I3
=
I1
,
NTOT
,
NP2
J3
=
J
+
I3
-
I2
TEMPR
=
DATA
(
I3
)
TEMPI
=
DATA
(
I3
+
1
)
DATA
(
I3
)
=
DATA
(
J3
)
DATA
(
I3
+
1
)
=
DATA
(
J3
+
1
)
DATA
(
J3
)
=
TEMPR
DATA
(
J3
+
1
)
=
TEMPI
125
CONTINUE
126
CONTINUE
127
M
=
NP2HF
128
IF
(
J
-
M
)
130
,
130
,
129
129
J
=
J
-
M
M
=
M
/
2
IF
(
M
-
NP1
)
130
,
128
,
128
130
J
=
J
+
M
131
CONTINUE
GO
TO
142
c
c
shuffle
data
by
digit
reversal
for
general
n
c
132
NWORK
=
2
*
N
DO
141
I1
=
1
,
NP1
,
2
DO
140
I3
=
I1
,
NTOT
,
NP2
J
=
I3
DO
138
I
=
1
,
NWORK
,
2
IF
(
ICASE
-
3
)
133
,
134
,
133
133
WORK
(
I
)
=
DATA
(
J
)
WORK
(
I
+
1
)
=
DATA
(
J
+
1
)
GO
TO
135
134
WORK
(
I
)
=
DATA
(
J
)
WORK
(
I
+
1
)
=
0.
135
IFP2
=
NP2
IF
=
IFMIN
136
IFP1
=
IFP2
/
IFACT
(
IF
)
J
=
J
+
IFP1
IF
(
J
-
I3
-
IFP2
)
138
,
137
,
137
137
J
=
J
-
IFP2
IFP2
=
IFP1
IF
=
IF
+
1
IF
(
IFP2
-
NP1
)
138
,
138
,
136
138
CONTINUE
I2MAX
=
I3
+
NP2
-
NP1
I
=
1
DO
139
I2
=
I3
,
I2MAX
,
NP1
DATA
(
I2
)
=
WORK
(
I
)
DATA
(
I2
+
1
)
=
WORK
(
I
+
1
)
I
=
I
+
2
139
CONTINUE
140
CONTINUE
141
CONTINUE
c
c
main
loop
for
factors
of
two
.
perform
fourier
transforms
of
c
length
four
,
with
one
of
length
two
if
needed
.
the
twiddle
factor
c
w
=
exp
(
isign
*
2
*
pi
*
sqrt
(
-
1
)
*
m
/
(
4
*
mmax
))
.
check
for
w
=
isign
*
sqrt
(
-
1
)
c
and repeat
for
w
=
w
*
(
1
+
isign
*
sqrt
(
-
1
))
/
sqrt
(
2
)
.
c
142
IF
(
NTWO
-
NP1
)
174
,
174
,
143
143
NP1TW
=
NP1
+
NP1
IPAR
=
NTWO
/
NP1
144
IF
(
IPAR
-
2
)
149
,
146
,
145
145
IPAR
=
IPAR
/
4
GO
TO
144
146
DO
148
I1
=
1
,
I1RNG
,
2
DO
147
K1
=
I1
,
NTOT
,
NP1TW
K2
=
K1
+
NP1
TEMPR
=
DATA
(
K2
)
TEMPI
=
DATA
(
K2
+
1
)
DATA
(
K2
)
=
DATA
(
K1
)
-
TEMPR
DATA
(
K2
+
1
)
=
DATA
(
K1
+
1
)
-
TEMPI
DATA
(
K1
)
=
DATA
(
K1
)
+
TEMPR
DATA
(
K1
+
1
)
=
DATA
(
K1
+
1
)
+
TEMPI
147
CONTINUE
148
CONTINUE
149
MMAX
=
NP1
150
IF
(
MMAX
-
NTWO
/
2
)
151
,
174
,
174
151
LMAX
=
MAX0
(
NP1TW
,
MMAX
/
2
)
DO
173
L
=
NP1
,
LMAX
,
NP1TW
M
=
L
IF
(
MMAX
-
NP1
)
156
,
156
,
152
152
THETA
=
-
TWOPI
*
REAL
(
L
)
/
REAL
(
4
*
MMAX
)
IF
(
ISIGN
)
154
,
153
,
153
153
THETA
=
-
THETA
154
WR
=
COS
(
THETA
)
WI
=
SIN
(
THETA
)
155
W2R
=
WR
*
WR
-
WI
*
WI
W2I
=
2.
*
WR
*
WI
W3R
=
W2R
*
WR
-
W2I
*
WI
W3I
=
W2R
*
WI
+
W2I
*
WR
156
DO
169
I1
=
1
,
I1RNG
,
2
KMIN
=
I1
+
IPAR
*
M
IF
(
MMAX
-
NP1
)
157
,
157
,
158
157
KMIN
=
I1
158
KDIF
=
IPAR
*
MMAX
159
KSTEP
=
4
*
KDIF
IF
(
KSTEP
-
NTWO
)
160
,
160
,
169
160
DO
168
K1
=
KMIN
,
NTOT
,
KSTEP
K2
=
K1
+
KDIF
K3
=
K2
+
KDIF
K4
=
K3
+
KDIF
IF
(
MMAX
-
NP1
)
161
,
161
,
164
161
U1R
=
DATA
(
K1
)
+
DATA
(
K2
)
U1I
=
DATA
(
K1
+
1
)
+
DATA
(
K2
+
1
)
U2R
=
DATA
(
K3
)
+
DATA
(
K4
)
U2I
=
DATA
(
K3
+
1
)
+
DATA
(
K4
+
1
)
U3R
=
DATA
(
K1
)
-
DATA
(
K2
)
U3I
=
DATA
(
K1
+
1
)
-
DATA
(
K2
+
1
)
IF
(
ISIGN
)
162
,
163
,
163
162
U4R
=
DATA
(
K3
+
1
)
-
DATA
(
K4
+
1
)
U4I
=
DATA
(
K4
)
-
DATA
(
K3
)
GO
TO
167
163
U4R
=
DATA
(
K4
+
1
)
-
DATA
(
K3
+
1
)
U4I
=
DATA
(
K3
)
-
DATA
(
K4
)
GO
TO
167
164
T2R
=
W2R
*
DATA
(
K2
)
-
W2I
*
DATA
(
K2
+
1
)
T2I
=
W2R
*
DATA
(
K2
+
1
)
+
W2I
*
DATA
(
K2
)
T3R
=
WR
*
DATA
(
K3
)
-
WI
*
DATA
(
K3
+
1
)
T3I
=
WR
*
DATA
(
K3
+
1
)
+
WI
*
DATA
(
K3
)
T4R
=
W3R
*
DATA
(
K4
)
-
W3I
*
DATA
(
K4
+
1
)
T4I
=
W3R
*
DATA
(
K4
+
1
)
+
W3I
*
DATA
(
K4
)
U1R
=
DATA
(
K1
)
+
T2R
U1I
=
DATA
(
K1
+
1
)
+
T2I
U2R
=
T3R
+
T4R
U2I
=
T3I
+
T4I
U3R
=
DATA
(
K1
)
-
T2R
U3I
=
DATA
(
K1
+
1
)
-
T2I
IF
(
ISIGN
)
165
,
166
,
166
165
U4R
=
T3I
-
T4I
U4I
=
T4R
-
T3R
GO
TO
167
166
U4R
=
T4I
-
T3I
U4I
=
T3R
-
T4R
167
DATA
(
K1
)
=
U1R
+
U2R
DATA
(
K1
+
1
)
=
U1I
+
U2I
DATA
(
K2
)
=
U3R
+
U4R
DATA
(
K2
+
1
)
=
U3I
+
U4I
DATA
(
K3
)
=
U1R
-
U2R
DATA
(
K3
+
1
)
=
U1I
-
U2I
DATA
(
K4
)
=
U3R
-
U4R
DATA
(
K4
+
1
)
=
U3I
-
U4I
168
CONTINUE
KDIF
=
KSTEP
KMIN
=
4
*
(
KMIN
-
I1
)
+
I1
GO
TO
159
169
CONTINUE
M
=
M
+
LMAX
IF
(
M
-
MMAX
)
170
,
170
,
173
170
IF
(
ISIGN
)
171
,
172
,
172
171
TEMPR
=
WR
WR
=
(
WR
+
WI
)
*
RTHLF
WI
=
(
WI
-
TEMPR
)
*
RTHLF
GO
TO
155
172
TEMPR
=
WR
WR
=
(
WR
-
WI
)
*
RTHLF
WI
=
(
TEMPR
+
WI
)
*
RTHLF
GO
TO
155
173
CONTINUE
IPAR
=
3
-
IPAR
MMAX
=
MMAX
+
MMAX
GO
TO
150
c
c
main
loop
for
factors
not
equal
to
two
.
apply
the
twiddle
factor
c
w
=
exp
(
isign
*
2
*
pi
*
sqrt
(
-
1
)
*
(
j1
-
1
)
*
(
j2
-
j1
)
/
(
ifp1
+
ifp2
)),
then
c
perform
a
fourier
transform
of
length
ifact
(
if
),
making
use
of
c
conjugate
symmetries
.
c
174
IF
(
NTWO
-
NP2
)
175
,
201
,
201
175
IFP1
=
NTWO
IF
=
INON2
NP1HF
=
NP1
/
2
176
IFP2
=
IFACT
(
IF
)
*
IFP1
J1MIN
=
NP1
+
1
IF
(
J1MIN
-
IFP1
)
177
,
177
,
184
177
DO
183
J1
=
J1MIN
,
IFP1
,
NP1
THETA
=
-
TWOPI
*
REAL
(
J1
-
1
)
/
REAL
(
IFP2
)
IF
(
ISIGN
)
179
,
178
,
178
178
THETA
=
-
THETA
179
WSTPR
=
COS
(
THETA
)
WSTPI
=
SIN
(
THETA
)
WR
=
WSTPR
WI
=
WSTPI
J2MIN
=
J1
+
IFP1
J2MAX
=
J1
+
IFP2
-
IFP1
DO
182
J2
=
J2MIN
,
J2MAX
,
IFP1
I1MAX
=
J2
+
I1RNG
-
2
DO
181
I1
=
J2
,
I1MAX
,
2
DO
180
J3
=
I1
,
NTOT
,
IFP2
TEMPR
=
DATA
(
J3
)
DATA
(
J3
)
=
DATA
(
J3
)
*
WR
-
DATA
(
J3
+
1
)
*
WI
DATA
(
J3
+
1
)
=
TEMPR
*
WI
+
DATA
(
J3
+
1
)
*
WR
180
CONTINUE
181
CONTINUE
TEMPR
=
WR
WR
=
WR
*
WSTPR
-
WI
*
WSTPI
WI
=
TEMPR
*
WSTPI
+
WI
*
WSTPR
182
CONTINUE
183
CONTINUE
184
THETA
=
-
TWOPI
/
REAL
(
IFACT
(
IF
))
IF
(
ISIGN
)
186
,
185
,
185
185
THETA
=
-
THETA
186
WSTPR
=
COS
(
THETA
)
WSTPI
=
SIN
(
THETA
)
J2RNG
=
IFP1
*
(
1
+
IFACT
(
IF
)
/
2
)
DO
200
I1
=
1
,
I1RNG
,
2
DO
199
I3
=
I1
,
NTOT
,
NP2
J2MAX
=
I3
+
J2RNG
-
IFP1
DO
197
J2
=
I3
,
J2MAX
,
IFP1
J1MAX
=
J2
+
IFP1
-
NP1
DO
193
J1
=
J2
,
J1MAX
,
NP1
J3MAX
=
J1
+
NP2
-
IFP2
DO
192
J3
=
J1
,
J3MAX
,
IFP2
JMIN
=
J3
-
J2
+
I3
JMAX
=
JMIN
+
IFP2
-
IFP1
I
=
1
+
(
J3
-
I3
)
/
NP1HF
IF
(
J2
-
I3
)
187
,
187
,
189
187
SUMR
=
0.
SUMI
=
0.
DO
188
J
=
JMIN
,
JMAX
,
IFP1
SUMR
=
SUMR
+
DATA
(
J
)
SUMI
=
SUMI
+
DATA
(
J
+
1
)
188
CONTINUE
WORK
(
I
)
=
SUMR
WORK
(
I
+
1
)
=
SUMI
GO
TO
192
189
ICONJ
=
1
+
(
IFP2
-
2
*
J2
+
I3
+
J3
)
/
NP1HF
J
=
JMAX
SUMR
=
DATA
(
J
)
SUMI
=
DATA
(
J
+
1
)
OLDSR
=
0.
OLDSI
=
0.
J
=
J
-
IFP1
190
TEMPR
=
SUMR
TEMPI
=
SUMI
SUMR
=
TWOWR
*
SUMR
-
OLDSR
+
DATA
(
J
)
SUMI
=
TWOWR
*
SUMI
-
OLDSI
+
DATA
(
J
+
1
)
OLDSR
=
TEMPR
OLDSI
=
TEMPI
J
=
J
-
IFP1
IF
(
J
-
JMIN
)
191
,
191
,
190
191
TEMPR
=
WR
*
SUMR
-
OLDSR
+
DATA
(
J
)
TEMPI
=
WI
*
SUMI
WORK
(
I
)
=
TEMPR
-
TEMPI
WORK
(
ICONJ
)
=
TEMPR
+
TEMPI
TEMPR
=
WR
*
SUMI
-
OLDSI
+
DATA
(
J
+
1
)
TEMPI
=
WI
*
SUMR
WORK
(
I
+
1
)
=
TEMPR
+
TEMPI
WORK
(
ICONJ
+
1
)
=
TEMPR
-
TEMPI
192
CONTINUE
193
CONTINUE
IF
(
J2
-
I3
)
194
,
194
,
195
194
WR
=
WSTPR
WI
=
WSTPI
GO
TO
196
195
TEMPR
=
WR
WR
=
WR
*
WSTPR
-
WI
*
WSTPI
WI
=
TEMPR
*
WSTPI
+
WI
*
WSTPR
196
TWOWR
=
WR
+
WR
197
CONTINUE
I
=
1
I2MAX
=
I3
+
NP2
-
NP1
DO
198
I2
=
I3
,
I2MAX
,
NP1
DATA
(
I2
)
=
WORK
(
I
)
DATA
(
I2
+
1
)
=
WORK
(
I
+
1
)
I
=
I
+
2
198
CONTINUE
199
CONTINUE
200
CONTINUE
IF
=
IF
+
1
IFP1
=
IFP2
IF
(
IFP1
-
NP2
)
176
,
201
,
201
c
c
complete
a
real
transform
in
the
1
st
dimension
,
n
even
,
by
con
-
c
jugate
symmetries
.
c
201
GO
TO
(
230
,
220
,
230
,
202
)
ICASE
202
NHALF
=
N
N
=
N
+
N
THETA
=
-
TWOPI
/
REAL
(
N
)
IF
(
ISIGN
)
204
,
203
,
203
203
THETA
=
-
THETA
204
WSTPR
=
COS
(
THETA
)
WSTPI
=
SIN
(
THETA
)
WR
=
WSTPR
WI
=
WSTPI
IMIN
=
3
JMIN
=
2
*
NHALF
-
1
GO
TO
207
205
J
=
JMIN
DO
206
I
=
IMIN
,
NTOT
,
NP2
SUMR
=
(
DATA
(
I
)
+
DATA
(
J
))
/
2.
SUMI
=
(
DATA
(
I
+
1
)
+
DATA
(
J
+
1
))
/
2.
DIFR
=
(
DATA
(
I
)
-
DATA
(
J
))
/
2.
DIFI
=
(
DATA
(
I
+
1
)
-
DATA
(
J
+
1
))
/
2.
TEMPR
=
WR
*
SUMI
+
WI
*
DIFR
TEMPI
=
WI
*
SUMI
-
WR
*
DIFR
DATA
(
I
)
=
SUMR
+
TEMPR
DATA
(
I
+
1
)
=
DIFI
+
TEMPI
DATA
(
J
)
=
SUMR
-
TEMPR
DATA
(
J
+
1
)
=
-
DIFI
+
TEMPI
J
=
J
+
NP2
206
CONTINUE
IMIN
=
IMIN
+
2
JMIN
=
JMIN
-
2
TEMPR
=
WR
WR
=
WR
*
WSTPR
-
WI
*
WSTPI
WI
=
TEMPR
*
WSTPI
+
WI
*
WSTPR
207
IF
(
IMIN
-
JMIN
)
205
,
208
,
211
208
IF
(
ISIGN
)
209
,
211
,
211
209
DO
210
I
=
IMIN
,
NTOT
,
NP2
DATA
(
I
+
1
)
=
-
DATA
(
I
+
1
)
210
CONTINUE
211
NP2
=
NP2
+
NP2
NTOT
=
NTOT
+
NTOT
J
=
NTOT
+
1
IMAX
=
NTOT
/
2
+
1
212
IMIN
=
IMAX
-
2
*
NHALF
I
=
IMIN
GO
TO
214
213
DATA
(
J
)
=
DATA
(
I
)
DATA
(
J
+
1
)
=
-
DATA
(
I
+
1
)
214
I
=
I
+
2
J
=
J
-
2
IF
(
I
-
IMAX
)
213
,
215
,
215
215
DATA
(
J
)
=
DATA
(
IMIN
)
-
DATA
(
IMIN
+
1
)
DATA
(
J
+
1
)
=
0.
IF
(
I
-
J
)
217
,
219
,
219
216
DATA
(
J
)
=
DATA
(
I
)
DATA
(
J
+
1
)
=
DATA
(
I
+
1
)
217
I
=
I
-
2
J
=
J
-
2
IF
(
I
-
IMIN
)
218
,
218
,
216
218
DATA
(
J
)
=
DATA
(
IMIN
)
+
DATA
(
IMIN
+
1
)
DATA
(
J
+
1
)
=
0.
IMAX
=
IMIN
GO
TO
212
219
DATA
(
1
)
=
DATA
(
1
)
+
DATA
(
2
)
DATA
(
2
)
=
0.
GO
TO
230
c
c
complete
a
real
transform
for
the
2
nd
or
3
rd
dimension
by
c
conjugate
symmetries
.
c
220
IF
(
I1RNG
-
NP1
)
221
,
230
,
230
221
DO
229
I3
=
1
,
NTOT
,
NP2
I2MAX
=
I3
+
NP2
-
NP1
DO
228
I2
=
I3
,
I2MAX
,
NP1
IMIN
=
I2
+
I1RNG
IMAX
=
I2
+
NP1
-
2
JMAX
=
2
*
I3
+
NP1
-
IMIN
IF
(
I2
-
I3
)
223
,
223
,
222
222
JMAX
=
JMAX
+
NP2
223
IF
(
IDIM
-
2
)
226
,
226
,
224
224
J
=
JMAX
+
NP0
DO
225
I
=
IMIN
,
IMAX
,
2
DATA
(
I
)
=
DATA
(
J
)
DATA
(
I
+
1
)
=
-
DATA
(
J
+
1
)
J
=
J
-
2
225
CONTINUE
226
J
=
JMAX
DO
227
I
=
IMIN
,
IMAX
,
NP0
DATA
(
I
)
=
DATA
(
J
)
DATA
(
I
+
1
)
=
-
DATA
(
J
+
1
)
J
=
J
-
NP0
227
CONTINUE
228
CONTINUE
229
CONTINUE
c
c
end
of
loop
on
each
dimension
c
230
NP0
=
NP1
NP1
=
NP2
NPREV
=
N
231
CONTINUE
232
RETURN
c
c
revision
history
---
c
c
january
1978
deleted
references
to
the
*
cosy
cards
and
c
added
revision
history
c
-----------------------------------------------------------------------
END
Event Timeline
Log In to Comment