Page MenuHomec4science

criticinv.c
No OneTemporary

File Metadata

Created
Mon, Jan 13, 15:19

criticinv.c

#include<stdio.h>
#include<math.h>
#include<fonction.h>
#include<constant.h>
#include<dimension.h>
#include<structure.h>
/****************************************************************/
/* nom: critic */
/* auteur: Jean-Paul Kneib */
/* date: 10/02/92 */
/* place: Toulouse */
/****************************************************************/
/* Parameters
* xmin, ymin, xmax, ymax define the size of the working image
*
* Global variables used :
* - CL, radial, tangent, lens, nrline, ntline, flagr, flagt, G
* - in e_zeroamp() : G, lens
* - in next() : G, lens
* - in e_dpl() : G, lens, lens_table
* - in dratio() : C
* - in chsigne() : G, lens
* - in follow() : CL, radial, nrline, flagr, G, lens, lens_table
* - in followi() : CL, ntline, flagt, tangent, G, lens, lens_table
* */
#undef NPOINT
#define NPOINT 4
void criticinv(double xmin, double ymin, double xmax, double ymax)
{
const extern struct g_cline CL;
extern struct biline radial[], tangent[];
const extern struct pot lens[];
const extern struct g_grille G;
extern int nrline, ntline, flagr, flagt;
struct point A, B, DPL, N, O, OI, OS, P, Q;
struct point LP[NLMAX+1]; /*path from the bottom left hand corner to the
farthest lens*/
struct point LDPL[NLMAX+1]; /*distance in units of ppas in x and y directions
between 2 consecutive lenses*/
int lnpas[NLMAX+1];
int nu[NLMAX+1]; /*contains the lens order on the LP path*/
int fsel[NLMAX+1]; /*keep in memory that nu[i] lens has been considered
in the LP path*/
double ppas; /* sampling size.(Diag/NPOINT)*/
double dc;
double Dmin;
double J;
double dl0s, dos, dlsds; // distances between lens[0] and CL.nz[i], and ratio
register int j, k, ii;
register int i;
int signe_flag;
/* initialisation de quelques constantes */
nrline = 0;
flagr = 1;
ntline = 0;
flagt = 1;
J = NPOINT;
ppas = sqrt((xmax - xmin) * (xmax - xmin) + (ymax - ymin) * (ymax - ymin)) / NPOINT;
/* liste des points a suivre */
/* if only 1 lens*/
if (G.nlens == 1)
{
LP[0] = lens[0].C;
LDPL[0].x = Max(xmax - lens[0].C.x, xmin - lens[0].C.x) / J;
LDPL[0].y = Max(ymax - lens[0].C.y, ymin - lens[0].C.y) / J;
if ((lens[0].type == 5) || (lens[0].type == 7) ||
(lens[0].type == 0) || (lens[0].type == 1))
{
LP[0].x += LDPL[0].x;
LP[0].y += LDPL[0].y;
};
lnpas[0] = NPOINT;
} /*end of if only 1 lens*/
else
{
LP[0].x = xmin; /*LP is the path from the bottom left hand corner to the farthest lens*/
LP[0].y = ymin;
Dmin = 9999.;
for (i = 0; i < G.nlens; i++)
{
nu[i] = 99;
fsel[i] = 0;
};
/* look for the closest lens from the bottom left hand corner*/
for (i = 0; i < G.nlens; i++)
{
dc = dist(LP[0], lens[i].C);
if (dc < Dmin)
{
Dmin = dc; /* Dmin contains the minimum distance from the corner*/
nu[0] = i; /* nu[0] contains the index for the 1st closest lens*/
};
};
LP[1] = lens[nu[0]].C;
fsel[nu[0]] = 1;
/*for each lens*/
for (i = 1; i < G.nlens; i++)
{
Dmin = 9999.;
/*find the closest lens from the LP[i] point*/
for (j = 0; j < G.nlens; j++)
{
if (fsel[j] != 1)
{
dc = dist(LP[i], lens[j].C);
if (dc < Dmin)
{
Dmin = dc;
nu[i] = j; /*keep the lens order on the LP path*/
};
};
};
LP[i+1] = lens[nu[i]].C;
fsel[nu[i]] = 1; /*keep in memory that nu[i] lens has been considered in the LP path*/
}; /*end of for each lens*/
/*for each lens*/
for (i = 0; i < G.nlens; i++)
{
if ((lens[nu[i]].type == 5) || (lens[nu[i]].type == 7) ||
(lens[nu[i]].type == 0) || (lens[nu[i]].type == 1))
{
LP[i+1].x += 0.01;
LP[i+1].y += 0.015;
};
/*number of ppas in x and y between 2 consecutive lenses*/
lnpas[i] = (int) (dist(LP[i], LP[i+1]) / 2. / ppas);
LDPL[i].x = (LP[i+1].x - LP[i].x) / lnpas[i];
LDPL[i].y = (LP[i+1].y - LP[i].y) / lnpas[i];
};
}; /*end of there are more than 1 lens*/
/*for each critical line to draw*/
for (k = 0; k < CL.nplan; k++)
{
dl0s = distcosmo2(lens[0].z, CL.cz[k]);
dos = distcosmo1(CL.cz[k]);
dlsds = dl0s / dos;
/*for each lens*/
for (ii = 0; ii < G.nlens; ii++)
{
A = LP[ii];
DPL = LDPL[ii];
/*for each point along the path*/
for (i = 1; i < lnpas[ii]; A = B, i++)
{
B.x = A.x + DPL.x;
B.y = A.y + DPL.y;
signe_flag = chsigne(A, B, dl0s, dos, CL.cz[k]);
if (signe_flag == 1)
/*search for the radial critical line*/
{
radial[nrline].i = flagr;
OI = O = radial[nrline].I = e_zeroamp(A, B, dl0s, dos, CL.cz[k]);
e_dpl(&O, dlsds, &OI);
radial[nrline++].S = OI;
N.x = O.x - DPL.y / 2.;
N.y = O.y + DPL.x / 2.;
radial[nrline].i = flagr;
P = radial[nrline].I = next(N, O, CL.cpas / 2., dl0s, dos, CL.cz[k]);
e_dpl(&P, dlsds, &radial[nrline++].S);
radial[nrline].i = flagr;
Q = radial[nrline].I = next(O, P, CL.cpas / 2., dl0s, dos, CL.cz[k]);
e_dpl(&Q, dlsds, &radial[nrline++].S);
follow(P, Q, O, dl0s, dos, CL.cz[k]);
radial[nrline].i = flagr;
radial[nrline].I = OI;
radial[nrline++].S = OS;
flagr++;
} /*end of if (signe_flag==1)*/
else if (signe_flag == 2)
{
tangent[ntline].i = flagt;
OI = O = tangent[ntline].I = e_zeroamp(A, B, dl0s, dos, CL.cz[k]);
e_dpl(&O, dlsds, &OS);
tangent[ntline++].S = OS;
N.x = O.x - DPL.y / 2.;
N.y = O.y + DPL.x / 2.;
tangent[ntline].i = flagt;
P = tangent[ntline].I = next(N, O, CL.cpas, dl0s, dos, CL.cz[k]);
e_dpl(&P, dlsds, &tangent[ntline++].S);
tangent[ntline].i = flagt;
Q = tangent[ntline].I = next(O, P, CL.cpas, dl0s, dos, CL.cz[k]);
e_dpl(&Q, dlsds, &tangent[ntline++].S);
followi(P, Q, O, dl0s, dos, CL.cz[k]);
tangent[ntline].i = flagt;
tangent[ntline].I = OI;
tangent[ntline++].S = OS;
flagt++;
}; /*end of if (signe_flag==2) */
}; /*end of for(i=1;i<lnpas[ii];A=B,i++)*/
}; /*end of for(ii=0;ii<G.nlens;ii++)*/
}; /*end of for(k=0;k<CL.nplan;k++)*/
}

Event Timeline