Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F97538525
isoima.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jan 5, 01:49
Size
3 KB
Mime Type
text/x-c
Expires
Tue, Jan 7, 01:49 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
23423193
Attached To
R1448 Lenstool-HPC
isoima.c
View Options
#include<stdio.h>
#include<math.h>
#include<fonction.h>
#include<constant.h>
#include<dimension.h>
#include<structure.h>
static void rotelip(struct ellipse *el, double theta, struct ellipse *el_r);
static void formatrix(struct ellipse *eli, struct matrix *r);
static void mag(struct matrix *A, struct ellipse *ampli, struct matrix *B);
/****************************************************************/
/* nom: isoima */
/* auteur: Jean-Paul Kneib */
/* date: 10/02/92 */
/* place: Toulouse */
/****************************************************************
* Convert an ellipse from source to image plane or from
* image to source plane according to the amplification matrix.
*
* When passing from image to source plane, ampli is the eigenvalues of the A^-1 matrix
* ( 1-k+gamma, 1-k-gamma ) and theta is the magnification axis angle theta_pot.
*
* When passing from the source to the image plane, ampli is the eigenvalues of the A matrix
* ( 1 / (1-k+gamma), 1 / (1-k-gamma) ) and theta is ALSO the magnification axis angle theta_pot.
*
* ampli(IN) : not modified
* Global variables used :
* - none
*/
void isoima(struct ellipse *es, struct ellipse *ampli, struct ellipse *ei)
{
struct ellipse esm, eim;
struct matrix S, I;
/* on se place dans le repere de magnification*/
rotelip(es, ampli->theta, &esm);
/* la matrice des fij, c'est le carre des longueur !!! */
esm.a = esm.a * esm.a;
esm.b = esm.b * esm.b;
/* on determine la matrice correspondante f_i ou f_s (eq 2.92 JPK PhD thesis) */
formatrix(&esm, &S);
/* on determine la matrice image */
mag(&S, ampli, &I);
/* on determine l'ellipsoide correspondant par diagonalisation */
eim = formeli(I.a, I.b, I.c);
/* l'ellipse c'est la racine carre de l'ellipsoide */
eim.a = sqrt(eim.a);
eim.b = sqrt(eim.b);
/* on retourne dans le repere propre*/
rotelip(&eim, -ampli->theta, ei);
}
/* Change the ellipse angle from its original reference frame to a new reference frame
* with the same origin but rotated by an angle theta.
*/
static void rotelip(struct ellipse *el, double theta, struct ellipse *el_r)
{
el_r->a = el->a;
el_r->b = el->b;
el_r->theta = el->theta - theta;
}
/* Build a matrix form of the ellipse. The procedure works in both the source and the image plane.
* theta_i = 0 means that the ellipse major axis is aligned with the magnification direction
* theta_pot.
*/
static void formatrix(struct ellipse *eli, struct matrix *r)
{
struct matrix m;
m.a = eli->a; // start with fij = | a^2 0 |
m.c = eli->b; // | 0 b^2 |
m.b = m.d = 0.;
*r = rotmatrix(&m, eli->theta); // and apply the rotation f = R(theta_i) fij R(-theta_i)
// if theta_i = 0, f = fij
}
static void mag(struct matrix *A, struct ellipse *ampli, struct matrix *B)
{
double alpha, beta;
alpha = ampli->a; // streching or shrinking factor along major magnification axis
beta = ampli->b; // streching or shrinking factor along minor magnification axis
B->a = alpha * alpha * A->a; // see eq 2.109 of JPK PhD thesis
B->b = B->d = alpha * beta * A->b; // where alpha is 1-K+gamma and beta is 1-K-gamma when passing
B->c = beta * beta * A->c; // from image to source plane.
}
Event Timeline
Log In to Comment