Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91328009
gradient.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 10, 01:14
Size
24 KB
Mime Type
text/x-c
Expires
Tue, Nov 12, 01:14 (2 d)
Engine
blob
Format
Raw Data
Handle
22242907
Attached To
R1448 Lenstool-HPC
gradient.cpp
View Options
#include <iostream>
#include <string.h>
//#include <cuda_runtime.h>
#include <math.h>
#include <sys/time.h>
#include <fstream>
#include <immintrin.h>
#include <map>
/*
#ifdef __AVX__
#include "simd_math_avx.h"
#endif
#ifdef __AVX512F__
#include "simd_math_avx512f.h"
#endif
*/
#include "structure_hpc.h"
#include "gradient.hpp"
#include "utils.hpp"
//#include "iacaMarks.h"
//
//
//
/**@brief Return the gradient of the projected lens potential for one clump
* !!! You have to multiply by dlsds to obtain the true gradient
* for the expressions, see the papers : JP Kneib & P Natarajan, Cluster Lenses, The Astronomy and Astrophysics Review (2011) for 1 and 2
* and JP Kneib PhD (1993) for 3
*
* @param pImage point where the result is computed in the lens plane
* @param lens mass distribution
*/
//
/// Useful functions
//
complex
piemd_1derivatives_ci05
(
double
x
,
double
y
,
double
eps
,
double
rc
)
{
double
sqe
,
cx1
,
cxro
,
cyro
,
rem2
;
complex
zci
,
znum
,
zden
,
zis
,
zres
;
double
norm
;
//
//std::cout << "piemd_lderivatives" << std::endl;
sqe
=
sqrt
(
eps
);
cx1
=
(
1.
-
eps
)
/
(
1.
+
eps
);
cxro
=
(
1.
+
eps
)
*
(
1.
+
eps
);
cyro
=
(
1.
-
eps
)
*
(
1.
-
eps
);
//
rem2
=
x
*
x
/
cxro
+
y
*
y
/
cyro
;
/*zci=cpx(0.,-0.5*(1.-eps*eps)/sqe);
znum=cpx(cx1*x,(2.*sqe*sqrt(rc*rc+rem2)-y/cx1));
zden=cpx(x,(2.*rc*sqe-y));
zis=pcpx(zci,lncpx(dcpx(znum,zden)));
zres=pcpxflt(zis,b0);*/
// --> optimized code
zci
.
re
=
0
;
zci
.
im
=
-
0.5
*
(
1.
-
eps
*
eps
)
/
sqe
;
znum
.
re
=
cx1
*
x
;
znum
.
im
=
2.
*
sqe
*
sqrt
(
rc
*
rc
+
rem2
)
-
y
/
cx1
;
zden
.
re
=
x
;
zden
.
im
=
2.
*
rc
*
sqe
-
y
;
norm
=
zden
.
re
*
zden
.
re
+
zden
.
im
*
zden
.
im
;
// zis = znum/zden
zis
.
re
=
(
znum
.
re
*
zden
.
re
+
znum
.
im
*
zden
.
im
)
/
norm
;
zis
.
im
=
(
znum
.
im
*
zden
.
re
-
znum
.
re
*
zden
.
im
)
/
norm
;
norm
=
zis
.
re
;
zis
.
re
=
log
(
sqrt
(
norm
*
norm
+
zis
.
im
*
zis
.
im
));
// ln(zis) = ln(|zis|)+i.Arg(zis)
zis
.
im
=
atan2
(
zis
.
im
,
norm
);
// norm = zis.re;
zres
.
re
=
zci
.
re
*
zis
.
re
-
zci
.
im
*
zis
.
im
;
// Re( zci*ln(zis) )
zres
.
im
=
zci
.
im
*
zis
.
re
+
zis
.
im
*
zci
.
re
;
// Im( zci*ln(zis) )
//
//zres.re = zis.re*b0;
//zres.im = zis.im*b0;
//
return
(
zres
);
}
//
//// changes the coordinates of point P into a new basis (rotation of angle theta)
//// y' y x'
//// * | /
//// * | / theta
//// * | /
//// *|--------->x
/*
inline
struct point rotateCoordinateSystem(struct point P, double theta)
{
struct point Q;
Q.x = P.x*cos(theta) + P.y*sin(theta);
Q.y = P.y*cos(theta) - P.x*sin(theta);
return(Q);
}
*/
//
//
struct
point
grad_halo
(
const
struct
point
*
pImage
,
const
struct
Potential
*
lens
)
{
struct
point
true_coord
,
true_coord_rot
,
result
;
double
X
,
Y
,
R
,
angular_deviation
,
u
;
complex
zis
;
//
result
.
x
=
result
.
y
=
0.
;
//
/*positionning at the potential center*/
// Change the origin of the coordinate system to the center of the clump
true_coord
.
x
=
pImage
->
x
-
lens
->
position
.
x
;
true_coord
.
y
=
pImage
->
y
-
lens
->
position
.
y
;
//printf("x, y = %f, %f\n", lens->position.x, lens->position.y);
//
true_coord_rot
=
rotateCoordinateSystem
(
true_coord
,
lens
->
ellipticity_angle
);
//
switch
(
lens
->
type
)
{
case
(
5
)
:
/*Elliptical Isothermal Sphere*/
/*rotation of the coordiante axes to match the potential axes*/
//true_coord_rotation = rotateCoordinateSystem(true_coord, lens->ellipticity_angle);
//
R
=
sqrt
(
true_coord_rot
.
x
*
true_coord_rot
.
x
*
(
1
-
lens
->
ellipticity
/
3.
)
+
true_coord_rot
.
y
*
true_coord_rot
.
y
*
(
1
+
lens
->
ellipticity
/
3.
));
//ellippot = ellipmass/3
result
.
x
=
(
1
-
lens
->
ellipticity
/
3.
)
*
lens
->
b0
*
true_coord_rot
.
x
/
(
R
);
result
.
y
=
(
1
+
lens
->
ellipticity
/
3.
)
*
lens
->
b0
*
true_coord_rot
.
y
/
(
R
);
break
;
case
(
8
)
:
/* PIEMD */
/*rotation of the coordiante axes to match the potential axes*/
/*Doing something....*/
complex
zis
=
piemd_1derivatives_ci05
(
true_coord_rot
.
x
,
true_coord_rot
.
y
,
lens
->
ellipticity_potential
,
lens
->
rcore
);
//
result
.
x
=
lens
->
b0
*
zis
.
re
;
result
.
y
=
lens
->
b0
*
zis
.
im
;
break
;
case
(
81
)
:
//PIEMD Kassiola & Kovner,1993 I0.5c-I0.5cut
double
t05
;
if
(
lens
->
ellipticity_potential
>
2E-4
)
{
//printf("1 ");
t05
=
lens
->
b0
*
lens
->
rcut
/
(
lens
->
rcut
-
lens
->
rcore
);
complex
zis
=
piemd_1derivatives_ci05
(
true_coord_rot
.
x
,
true_coord_rot
.
y
,
lens
->
ellipticity_potential
,
lens
->
rcore
);
complex
zis_cut
=
piemd_1derivatives_ci05
(
true_coord_rot
.
x
,
true_coord_rot
.
y
,
lens
->
ellipticity_potential
,
lens
->
rcut
);
result
.
x
=
t05
*
(
zis
.
re
-
zis_cut
.
re
);
result
.
y
=
t05
*
(
zis
.
im
-
zis_cut
.
im
);
//printf(" g = %f %f\n", result.x, result.y);
}
else
if
((
u
=
true_coord_rot
.
x
*
true_coord_rot
.
x
+
true_coord_rot
.
y
*
true_coord_rot
.
y
)
>
0.
)
{
//printf("2 ");
// Circular dPIE Elliasdottir 2007 Eq A23 slighly modified for t05
X
=
lens
->
rcore
;
Y
=
lens
->
rcut
;
t05
=
sqrt
(
u
+
X
*
X
)
-
X
-
sqrt
(
u
+
Y
*
Y
)
+
Y
;
// Faster and equiv to Elliasdottir (see Golse PhD)
t05
*=
lens
->
b0
*
Y
/
(
Y
-
X
)
/
u
;
// 1/u because t05/sqrt(u) and normalised Q/sqrt(u)
result
.
x
=
t05
*
true_coord_rot
.
x
;
result
.
y
=
t05
*
true_coord_rot
.
y
;
}
else
{
//printf("3 ");
result
.
x
=
0.
;
result
.
y
=
0.
;
}
break
;
default
:
std
::
cout
<<
"ERROR: Grad 1 profil type of clump "
<<
lens
->
name
<<
" unknown : "
<<
lens
->
type
<<
std
::
endl
;
break
;
};
result
=
rotateCoordinateSystem
(
result
,
-
lens
->
ellipticity_angle
);
//printf(" rot grad = %f %f\n", result.x, result.y);
return
result
;
}
//
//
//
struct
point
module_potentialDerivatives_totalGradient
(
const
int
nhalos
,
const
struct
point
*
pImage
,
const
struct
Potential
*
lens
)
{
struct
point
grad
,
clumpgrad
;
//
grad
.
x
=
0
;
grad
.
y
=
0
;
//
for
(
int
i
=
0
;
i
<
nhalos
;
i
++
)
{
clumpgrad
=
grad_halo
(
pImage
,
&
lens
[
i
]);
//compute gradient for each clump separately
//std::cout << clumpgrad.x << " " << clumpgrad.y << std::endl;
//nan check
//if(clumpgrad.x == clumpgrad.x or clumpgrad.y == clumpgrad.y)
{
// add the gradients
grad
.
x
+=
clumpgrad
.
x
;
grad
.
y
+=
clumpgrad
.
y
;
}
}
//
return
(
grad
);
}
//
// SOA versions, vectorizable
//
struct
point
module_potentialDerivatives_totalGradient_5_SOA
(
const
struct
point
*
pImage
,
const
struct
Potential_SOA
*
lens
,
int
shalos
,
int
nhalos
)
{
asm
volatile
(
"# module_potentialDerivatives_totalGradient_SIS_SOA begins"
);
//
struct
point
grad
,
clumpgrad
;
grad
.
x
=
0
;
grad
.
y
=
0
;
for
(
int
i
=
shalos
;
i
<
shalos
+
nhalos
;
i
++
)
{
//
struct
point
true_coord
,
true_coord_rotation
;
//
true_coord
.
x
=
pImage
->
x
-
lens
->
position_x
[
i
];
true_coord
.
y
=
pImage
->
y
-
lens
->
position_y
[
i
];
//
true_coord_rotation
=
rotateCoordinateSystem
(
true_coord
,
lens
->
ellipticity_angle
[
i
]);
double
R
=
sqrt
(
true_coord_rotation
.
x
*
true_coord_rotation
.
x
*
(
1
-
lens
->
ellipticity_potential
[
i
])
+
true_coord_rotation
.
y
*
true_coord_rotation
.
y
*
(
1
+
lens
->
ellipticity_potential
[
i
]));
//
grad
.
x
+=
(
1
-
lens
->
ellipticity
[
i
]
/
3.
)
*
lens
->
b0
[
i
]
*
true_coord_rotation
.
x
/
R
;
grad
.
y
+=
(
1
+
lens
->
ellipticity
[
i
]
/
3.
)
*
lens
->
b0
[
i
]
*
true_coord_rotation
.
y
/
R
;
}
return
grad
;
}
//
//
//
struct
point
module_potentialDerivatives_totalGradient_8_SOA
(
const
struct
point
*
pImage
,
const
struct
Potential_SOA
*
lens
,
int
shalos
,
int
nhalos
)
{
asm
volatile
(
"# module_potentialDerivatives_totalGradient_SOA begins"
);
// 6 DP loads, i.e. 48 Bytes: position_x, position_y, ellipticity_angle, ellipticity_potential, rcore, b0
//
struct
point
grad
,
clumpgrad
;
grad
.
x
=
0
;
grad
.
y
=
0
;
//
for
(
int
i
=
shalos
;
i
<
shalos
+
nhalos
;
i
++
)
{
//IACA_START;
//
struct
point
true_coord
,
true_coord_rot
;
//, result;
//double R, angular_deviation;
complex
zis
;
//
//result.x = result.y = 0.;
//
//@@printf("image_x = %f image_y = %f\n", pImage->x, pImage->y);
true_coord
.
x
=
pImage
->
x
-
lens
->
position_x
[
i
];
true_coord
.
y
=
pImage
->
y
-
lens
->
position_y
[
i
];
//printf("x = %f y = %f\n", true_coord.x, true_coord.y);
/*positionning at the potential center*/
// Change the origin of the coordinate system to the center of the clump
true_coord_rot
=
rotateCoordinateSystem
(
true_coord
,
lens
->
ellipticity_angle
[
i
]);
//
double
x
=
true_coord_rot
.
x
;
double
y
=
true_coord_rot
.
y
;
//@@printf("x = %f y = %f\n", x, y);
double
eps
=
lens
->
ellipticity_potential
[
i
];
double
rc
=
lens
->
rcore
[
i
];
//
//std::cout << "piemd_lderivatives" << std::endl;
//
double
sqe
=
sqrt
(
eps
);
//
double
cx1
=
(
1.
-
eps
)
/
(
1.
+
eps
);
double
cxro
=
(
1.
+
eps
)
*
(
1.
+
eps
);
double
cyro
=
(
1.
-
eps
)
*
(
1.
-
eps
);
//
double
rem2
=
x
*
x
/
cxro
+
y
*
y
/
cyro
;
//
complex
zci
,
znum
,
zden
,
zres
;
double
norm
;
//
zci
.
re
=
0
;
zci
.
im
=
-
0.5
*
(
1.
-
eps
*
eps
)
/
sqe
;
//@@printf("zci = %f %f\n", zci.re, zci.im);
//
znum
.
re
=
cx1
*
x
;
znum
.
im
=
2.
*
sqe
*
sqrt
(
rc
*
rc
+
rem2
)
-
y
/
cx1
;
//
zden
.
re
=
x
;
zden
.
im
=
2.
*
rc
*
sqe
-
y
;
norm
=
(
zden
.
re
*
zden
.
re
+
zden
.
im
*
zden
.
im
);
// zis = znum/zden
//@@printf("norm = %f\n", norm);
//
zis
.
re
=
(
znum
.
re
*
zden
.
re
+
znum
.
im
*
zden
.
im
)
/
norm
;
zis
.
im
=
(
znum
.
im
*
zden
.
re
-
znum
.
re
*
zden
.
im
)
/
norm
;
//@@printf("zis = %f %f\n", zis.re, zis.im);
norm
=
zis
.
re
;
zis
.
re
=
log
(
sqrt
(
norm
*
norm
+
zis
.
im
*
zis
.
im
));
// ln(zis) = ln(|zis|)+i.Arg(zis)
zis
.
im
=
atan2
(
zis
.
im
,
norm
);
//@@printf("y,x = %f %f\n", zis.im, norm);
// norm = zis.re;
zres
.
re
=
zci
.
re
*
zis
.
re
-
zci
.
im
*
zis
.
im
;
// Re( zci*ln(zis) )
zres
.
im
=
zci
.
im
*
zis
.
re
+
zis
.
im
*
zci
.
re
;
// Im( zci*ln(zis) )
//
//@@printf("zres: %f %f\n", zres.re, zres.im);
//
zis
.
re
=
zres
.
re
;
zis
.
im
=
zres
.
im
;
//
//zres.re = zis.re*b0;
//zres.im = zis.im*b0;
// rotation
clumpgrad
.
x
=
zis
.
re
;
clumpgrad
.
y
=
zis
.
im
;
clumpgrad
=
rotateCoordinateSystem
(
clumpgrad
,
-
lens
->
ellipticity_angle
[
i
]);
//
clumpgrad
.
x
=
lens
->
b0
[
i
]
*
clumpgrad
.
x
;
clumpgrad
.
y
=
lens
->
b0
[
i
]
*
clumpgrad
.
y
;
//
//clumpgrad.x = lens->b0[i]*zis.re;
//clumpgrad.y = lens->b0[i]*zis.im;
//nan check
//if(clumpgrad.x == clumpgrad.x or clumpgrad.y == clumpgrad.y)
//{
// add the gradients
grad
.
x
+=
clumpgrad
.
x
;
grad
.
y
+=
clumpgrad
.
y
;
//@@printf("grad: %f %f\n", grad.x, grad.y);
//@@std::cout << "grad.x = " << grad.x << " grad.y = " << grad.y << std::endl;
//}
}
//IACA_END;
//
return
(
grad
);
}
//
//
//
struct
point
module_potentialDerivatives_totalGradient_8_SOA_v2
(
const
struct
point
*
pImage
,
const
struct
Potential_SOA
*
lens
,
int
shalos
,
int
nhalos
)
{
asm
volatile
(
"# module_potentialDerivatives_totalGradient_8_SOA_v2 begins"
);
//std::cout << "# module_potentialDerivatives_totalGradient_8_SOA_v2 begins" << std::endl;
//
// 6 DP loads, i.e. 48 Bytes: position_x, position_y, ellipticity_angle, ellipticity_potential, rcore, b0
//
struct
point
grad
,
clumpgrad
;
grad
.
x
=
0
;
grad
.
y
=
0
;
//printf("%d %d\n", shalos, nhalos);
//
for
(
int
i
=
shalos
;
i
<
shalos
+
nhalos
;
i
++
)
{
//IACA_START;
//
struct
point
true_coord
,
true_coord_rot
;
//, result;
complex
zis
;
double
b0
=
lens
->
b0
[
i
];
//
true_coord
.
x
=
pImage
->
x
-
lens
->
position_x
[
i
];
true_coord
.
y
=
pImage
->
y
-
lens
->
position_y
[
i
];
//
//true_coord_rot = rotateCoordinateSystem(true_coord, lens->ellipticity_angle[i]);
//
double
cose
=
lens
->
anglecos
[
i
];
double
sine
=
lens
->
anglesin
[
i
];
//
double
x
=
true_coord
.
x
*
cose
+
true_coord
.
y
*
sine
;
double
y
=
true_coord
.
y
*
cose
-
true_coord
.
x
*
sine
;
//
//double x = true_coord_rot.x;
//double y = true_coord_rot.y;
//@@printf("x = %f y = %f\n", x, y);
double
eps
=
lens
->
ellipticity_potential
[
i
];
double
rc
=
lens
->
rcore
[
i
];
//
double
sqe
=
sqrt
(
eps
);
//
double
cx1
=
(
1.
-
eps
)
/
(
1.
+
eps
);
double
cxro
=
(
1.
+
eps
)
*
(
1.
+
eps
);
double
cyro
=
(
1.
-
eps
)
*
(
1.
-
eps
);
//
double
rem2
=
x
*
x
/
cxro
+
y
*
y
/
cyro
;
//
complex
zci
,
znum
,
zden
,
zres
;
double
norm
;
//
zci
.
re
=
0
;
zci
.
im
=
-
0.5
*
(
1.
-
eps
*
eps
)
/
sqe
;
//
//
#if 1
KERNEL
(
rc
,
zres
)
#else
znum
.
re
=
cx1
*
x
;
znum
.
im
=
2.
*
sqe
*
sqrt
(
rc
*
rc
+
rem2
)
-
y
/
cx1
;
//
zden
.
re
=
x
;
zden
.
im
=
2.
*
rc
*
sqe
-
y
;
norm
=
(
zden
.
re
*
zden
.
re
+
zden
.
im
*
zden
.
im
);
// zis = znum/zden
//
zis
.
re
=
(
znum
.
re
*
zden
.
re
+
znum
.
im
*
zden
.
im
)
/
norm
;
zis
.
im
=
(
znum
.
im
*
zden
.
re
-
znum
.
re
*
zden
.
im
)
/
norm
;
//
norm
=
zis
.
re
;
zis
.
re
=
log
(
sqrt
(
norm
*
norm
+
zis
.
im
*
zis
.
im
));
// ln(zis) = ln(|zis|)+i.Arg(zis)
zis
.
im
=
atan2
(
zis
.
im
,
norm
);
// norm = zis.re;
zres
.
re
=
zci
.
re
*
zis
.
re
-
zci
.
im
*
zis
.
im
;
// Re( zci*ln(zis) )
zres
.
im
=
zci
.
im
*
zis
.
re
+
zis
.
im
*
zci
.
re
;
// Im( zci*ln(zis) )
//
zis
.
re
=
zres
.
re
;
zis
.
im
=
zres
.
im
;
#endif
//
//grad.x += b0*(zres.re*cose - zres.im*sine);
//grad.y += b0*(zres.im*cose + zres.re*sine);
grad
.
x
+=
b0
*
(
zres
.
re
*
cose
-
zres
.
im
*
sine
);
grad
.
y
+=
b0
*
(
zres
.
im
*
cose
+
zres
.
re
*
sine
);
//
}
//IACA_END;
//
return
(
grad
);
}
//
//
//
struct
point
module_potentialDerivatives_totalGradient_81_SOA
(
const
struct
point
*
pImage
,
const
struct
Potential_SOA
*
lens
,
int
shalos
,
int
nhalos
)
{
asm
volatile
(
"# module_potentialDerivatives_totalGradient_81_SOA begins"
);
//std::cout << "# module_potentialDerivatives_totalGradient_SOA begins" << std::endl;
// 6 DP loads, i.e. 48 Bytes: position_x, position_y, ellipticity_angle, ellipticity_potential, rcore, b0
//
struct
point
grad
,
clumpgrad
;
grad
.
x
=
0
;
grad
.
y
=
0
;
for
(
int
i
=
shalos
;
i
<
shalos
+
nhalos
;
i
++
)
{
//IACA_START;
//
struct
point
true_coord
,
true_coord_rot
;
//, result;
//double R, angular_deviation;
complex
zis
;
//
//result.x = result.y = 0.;
//
true_coord
.
x
=
pImage
->
x
-
lens
->
position_x
[
i
];
true_coord
.
y
=
pImage
->
y
-
lens
->
position_y
[
i
];
/*positionning at the potential center*/
// Change the origin of the coordinate system to the center of the clump
true_coord_rot
=
rotateCoordinateSystem
(
true_coord
,
lens
->
ellipticity_angle
[
i
]);
//
double
x
=
true_coord_rot
.
x
;
double
y
=
true_coord_rot
.
y
;
double
eps
=
lens
->
ellipticity_potential
[
i
];
double
rc
=
lens
->
rcore
[
i
];
double
rcut
=
lens
->
rcut
[
i
];
double
b0
=
lens
->
b0
[
i
];
double
t05
=
b0
*
rcut
/
(
rcut
-
rc
);
//
double
sqe
=
sqrt
(
eps
);
//
double
cx1
=
(
1.
-
eps
)
/
(
1.
+
eps
);
double
cxro
=
(
1.
+
eps
)
*
(
1.
+
eps
);
double
cyro
=
(
1.
-
eps
)
*
(
1.
-
eps
);
//
double
rem2
=
x
*
x
/
cxro
+
y
*
y
/
cyro
;
//
complex
zci
,
znum
,
zden
,
zres_rc
,
zres_rcut
;
double
norm
;
//
zci
.
re
=
0
;
zci
.
im
=
-
0.5
*
(
1.
-
eps
*
eps
)
/
sqe
;
// step 1
{
#if 1
KERNEL
(
rc
,
zres_rc
)
#else
znum
.
re
=
cx1
*
x
;
znum
.
im
=
2.
*
sqe
*
sqrt
(
rc
*
rc
+
rem2
)
-
y
/
cx1
;
//
zden
.
re
=
x
;
zden
.
im
=
2.
*
rc
*
sqe
-
y
;
norm
=
(
zden
.
re
*
zden
.
re
+
zden
.
im
*
zden
.
im
);
// zis = znum/zden
//
zis
.
re
=
(
znum
.
re
*
zden
.
re
+
znum
.
im
*
zden
.
im
)
/
norm
;
zis
.
im
=
(
znum
.
im
*
zden
.
re
-
znum
.
re
*
zden
.
im
)
/
norm
;
norm
=
zis
.
re
;
zis
.
re
=
log
(
sqrt
(
norm
*
norm
+
zis
.
im
*
zis
.
im
));
// ln(zis) = ln(|zis|)+i.Arg(zis)
zis
.
im
=
atan2
(
zis
.
im
,
norm
);
// norm = zis.re;
zres_rc
.
re
=
zci
.
re
*
zis
.
re
-
zci
.
im
*
zis
.
im
;
// Re( zci*ln(zis) )
zres_rc
.
im
=
zci
.
im
*
zis
.
re
+
zis
.
im
*
zci
.
re
;
// Im( zci*ln(zis) )
#endif
}
// step 2
{
#if 1
KERNEL
(
rcut
,
zres_rcut
)
#else
znum
.
re
=
cx1
*
x
;
znum
.
im
=
2.
*
sqe
*
sqrt
(
rcut
*
rcut
+
rem2
)
-
y
/
cx1
;
//
zden
.
re
=
x
;
zden
.
im
=
2.
*
rcut
*
sqe
-
y
;
norm
=
(
zden
.
re
*
zden
.
re
+
zden
.
im
*
zden
.
im
);
// zis = znum/zden
//
zis
.
re
=
(
znum
.
re
*
zden
.
re
+
znum
.
im
*
zden
.
im
)
/
norm
;
zis
.
im
=
(
znum
.
im
*
zden
.
re
-
znum
.
re
*
zden
.
im
)
/
norm
;
norm
=
zis
.
re
;
zis
.
re
=
log
(
sqrt
(
norm
*
norm
+
zis
.
im
*
zis
.
im
));
// ln(zis) = ln(|zis|)+i.Arg(zis)
zis
.
im
=
atan2
(
zis
.
im
,
norm
);
//
zres_rcut
.
re
=
zci
.
re
*
zis
.
re
-
zci
.
im
*
zis
.
im
;
// Re( zci*ln(zis) )
zres_rcut
.
im
=
zci
.
im
*
zis
.
re
+
zis
.
im
*
zci
.
re
;
// Im( zci*ln(zis) )
#endif
}
zis
.
re
=
t05
*
(
zres_rc
.
re
-
zres_rcut
.
re
);
zis
.
im
=
t05
*
(
zres_rc
.
im
-
zres_rcut
.
im
);
// rotation
clumpgrad
.
x
=
zis
.
re
;
clumpgrad
.
y
=
zis
.
im
;
clumpgrad
=
rotateCoordinateSystem
(
clumpgrad
,
-
lens
->
ellipticity_angle
[
i
]);
//
grad
.
x
+=
clumpgrad
.
x
;
grad
.
y
+=
clumpgrad
.
y
;
//}
}
//IACA_END;
//
return
(
grad
);
}
//
//
//
struct
point
module_potentialDerivatives_totalGradient_81_SOA_v2
(
const
struct
point
*
pImage
,
const
struct
Potential_SOA
*
lens
,
int
shalos
,
int
nhalos
)
{
asm
volatile
(
"# module_potentialDerivatives_totalGradient_81_SOA begins"
);
//std::cout << "# module_potentialDerivatives_totalGradient_81_SOA begins" << std::endl;
// 6 DP loads, i.e. 48 Bytes: position_x, position_y, ellipticity_angle, ellipticity_potential, rcore, b0
//
struct
point
grad
,
clumpgrad
;
grad
.
x
=
0
;
grad
.
y
=
0
;
for
(
int
i
=
shalos
;
i
<
shalos
+
nhalos
;
i
++
)
{
//IACA_START;
//
struct
point
true_coord
,
true_coord_rot
;
//, result;
//double R, angular_deviation;
complex
zis
;
//
//result.x = result.y = 0.;
//
true_coord
.
x
=
pImage
->
x
-
lens
->
position_x
[
i
];
true_coord
.
y
=
pImage
->
y
-
lens
->
position_y
[
i
];
/*positionning at the potential center*/
// Change the origin of the coordinate system to the center of the clump
//true_coord_rot = rotateCoordinateSystem(true_coord, lens->ellipticity_angle[i]);
//
//double x = true_coord_rot.x;
//double y = true_coord_rot.y;
//
double
cose
=
lens
->
anglecos
[
i
];
double
sine
=
lens
->
anglesin
[
i
];
double
x
=
true_coord
.
x
*
cose
+
true_coord
.
y
*
sine
;
double
y
=
true_coord
.
y
*
cose
-
true_coord
.
x
*
sine
;
//
double
eps
=
lens
->
ellipticity_potential
[
i
];
double
rc
=
lens
->
rcore
[
i
];
double
rcut
=
lens
->
rcut
[
i
];
double
b0
=
lens
->
b0
[
i
];
double
t05
=
b0
*
rcut
/
(
rcut
-
rc
);
//
double
sqe
=
sqrt
(
eps
);
//
double
cx1
=
(
1.
-
eps
)
/
(
1.
+
eps
);
double
cxro
=
(
1.
+
eps
)
*
(
1.
+
eps
);
double
cyro
=
(
1.
-
eps
)
*
(
1.
-
eps
);
//
double
rem2
=
x
*
x
/
cxro
+
y
*
y
/
cyro
;
//
complex
zci
,
znum
,
zden
,
zres_rc
,
zres_rcut
;
double
norm
;
//
zci
.
re
=
0
;
zci
.
im
=
-
0.5
*
(
1.
-
eps
*
eps
)
/
sqe
;
// step 1
{
#if 0
KERNEL(rc, zres_rc)
#else
znum.re = cx1*x;
znum.im = 2.*sqe*sqrt(rc*rc + rem2) - y/cx1;
//
zden.re = x;
zden.im = 2.*rc*sqe - y;
norm = (zden.re*zden.re + zden.im*zden.im); // zis = znum/zden
//
zis.re = (znum.re*zden.re + znum.im*zden.im)/norm;
zis.im = (znum.im*zden.re - znum.re*zden.im)/norm;
norm = zis.re;
zis.re = log(sqrt(norm*norm + zis.im*zis.im)); // ln(zis) = ln(|zis|)+i.Arg(zis)
zis.im = atan2(zis.im, norm);
// norm = zis.re;
zres_rc.re = zci.re*zis.re - zci.im*zis.im; // Re( zci*ln(zis) )
zres_rc.im = zci.im*zis.re + zis.im*zci.re; // Im( zci*ln(zis) )
#endif
}
// step 2
{
#if 0
KERNEL(rcut, zres_rcut)
#else
znum.re = cx1*x;
znum.im = 2.*sqe*sqrt(rcut*rcut + rem2) - y/cx1;
//
zden.re = x;
zden.im = 2.*rcut*sqe - y;
norm = (zden.re*zden.re + zden.im*zden.im); // zis = znum/zden
//
zis.re = (znum.re*zden.re + znum.im*zden.im)/norm;
zis.im = (znum.im*zden.re - znum.re*zden.im)/norm;
norm = zis.re;
zis.re = log(sqrt(norm*norm + zis.im*zis.im)); // ln(zis) = ln(|zis|)+i.Arg(zis)
zis.im = atan2(zis.im, norm);
//
zres_rcut.re = zci.re*zis.re - zci.im*zis.im; // Re( zci*ln(zis) )
zres_rcut.im = zci.im*zis.re + zis.im*zci.re; // Im( zci*ln(zis) )
#endif
}
zis
.
re
=
t05
*
(
zres_rc
.
re
-
zres_rcut
.
re
);
zis
.
im
=
t05
*
(
zres_rc
.
im
-
zres_rcut
.
im
);
// rotation
grad
.
x
+=
(
zis
.
re
*
cose
-
zis
.
im
*
sine
);
grad
.
y
+=
(
zis
.
im
*
cose
+
zis
.
re
*
sine
);
//
}
//
return
(
grad
);
}
//
//
//
typedef
struct
point
(
*
halo_func_t
)
(
const
struct
point
*
pImage
,
const
struct
Potential_SOA
*
lens
,
int
shalos
,
int
nhalos
);
halo_func_t
halo_func
[
100
]
=
{
0
,
0
,
0
,
0
,
0
,
module_potentialDerivatives_totalGradient_5_SOA
,
0
,
0
,
module_potentialDerivatives_totalGradient_8_SOA_v2
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
module_potentialDerivatives_totalGradient_81_SOA_v2
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
//
//
//
struct
point
module_potentialDerivatives_totalGradient_SOA
(
const
struct
point
*
pImage
,
const
struct
Potential_SOA
*
lens
,
int
nhalos
)
{
struct
point
grad
,
clumpgrad
;
//
grad
.
x
=
clumpgrad
.
x
=
0
;
grad
.
y
=
clumpgrad
.
y
=
0
;
//
int
shalos
=
0
;
//
//module_potentialDerivatives_totalGradient_81_SOA(pImage, lens, 0, nhalos);
//return;
/*
int* p_type = &(lens->type)[0];
int* lens_type = (int*) malloc(nhalos*sizeof(int));
memcpy(lens_type, &(lens->type)[0], nhalos*sizeof(int));
*/
//quicksort(lens_type, nhalos);
//
while
(
shalos
<
nhalos
)
{
int
lens_type
=
lens
->
type
[
shalos
];
int
count
=
1
;
while
(
lens
->
type
[
shalos
+
count
]
==
lens_type
)
count
++
;
//std::cerr << "type = " << lens_type << " " << count << " " << shalos << std::endl;
//
clumpgrad
=
(
*
halo_func
[
lens_type
])(
pImage
,
lens
,
shalos
,
count
);
//
grad
.
x
+=
clumpgrad
.
x
;
grad
.
y
+=
clumpgrad
.
y
;
shalos
+=
count
;
}
return
(
grad
);
}
Event Timeline
Log In to Comment