Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F97284738
formeli.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jan 4, 01:17
Size
2 KB
Mime Type
text/x-c
Expires
Mon, Jan 6, 01:17 (2 d)
Engine
blob
Format
Raw Data
Handle
23371195
Attached To
R1448 Lenstool-HPC
formeli.c
View Options
#include<stdio.h>
#include<math.h>
#include<fonction.h>
#include<constant.h>
#include<dimension.h>
#include<structure.h>
/****************************************************************/
/* nom: formeli */
/* auteur: Jean-Paul Kneib */
/* date: 10/02/92 */
/* place: Toulouse */
/*****************************************************************
* Diagonalisation d'une matrice de forme ou de deformation
* Matrice de forme : M= | a b |
* | b c |
* lambda et mu : racines de det(M - XI)=0
*
* Return the diagonalized form of the input matrice M. Theta is the
* shear orientation, a and b are the proper magnification axis.
*
* If :
* 1) a = 1 - [g2].a = 1 - DLS/DS * d2phixx
* 2) c = 1 - [g2].c = 1 - DLS/DS * d2phiyy
* 3) b = - [g2].b = - DLS/DS * d2phixy
* then :
* with gamma = DLS/DS * SQRT ( 0.25 * (d2Phiyy - d2Phixx)^2 + (d2Phixy)^2 )
* with k = 0.5 * DLS/DS * ( d2Phixx + d2Phiyy ) (cf phd_JPK eq 2.55)
*
* delta = (a-c)^2+4b^2
* = [ DLS/DS * (d2Phiyy - d2Phixx) ]^2 + 4*[ DLS/DS * d2Phixy ]^2
* = 4*gamma^2 (cf phd_JPK eq 2.56)
*
* lambda = 0.5*(a + c + SQRT(delta) )
* = .5*( 2 - DLS/DS * (d2Phixx + d2Phiyy) + 2*gamma)
* = ( 1 - k + gamma )
*
* mu = ( 1 - k - gamma )
*
* Global variables used :
* - none
*/
struct ellipse formeli(double a, double b, double c)
{
struct ellipse eli;
double e, delta, lambda, mu;
// eq carateristique : det(M-xI) = 0
delta = (a - c)*(a - c) + 4*b*b; // 4*gamma^2 (cf phd_JPK eq 2.56)
e = sqrt(delta); /*e is 2 * shear, ie 2*gamma*/
lambda = .5*(a + c + e); // 1 - k + gamma
mu = .5*(a + c - e); // 1 - k - gamma
eli.a = lambda;
eli.b = mu;
if (lambda != mu && fabs(b) > 1e-5)
eli.theta = atan2(lambda - a, b); // cf phd_JPK eq 2.58, and
// tan(theta)= ( -cos(2theta) +- 1 ) / sin(2theta)
// ADDED by EJ 29/11/2007
else if ( a >= c ) // ellipse aligned along the major axis of magnification
eli.theta = 0.;
else
eli.theta = PI / 2.; // ellipse aligned along the minor axis of magnification
return(eli);
}
Event Timeline
Log In to Comment