Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91335358
gradient.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 10, 02:46
Size
24 KB
Mime Type
text/x-c
Expires
Tue, Nov 12, 02:46 (2 d)
Engine
blob
Format
Raw Data
Handle
22242907
Attached To
R1448 Lenstool-HPC
gradient.cpp
View Options
#include <iostream>
#include <string.h>
//#include <cuda_runtime.h>
#include <math.h>
#include <sys/time.h>
#include <fstream>
#include <immintrin.h>
#include <map>
/*
#ifdef __AVX__
#include "simd_math_avx.h"
#endif
#ifdef __AVX512F__
#include "simd_math_avx512f.h"
#endif
*/
#include "structure_hpc.h"
#include "gradient.hpp"
#include "utils.hpp"
//#include "iacaMarks.h"
//
//
//
/**@brief Return the gradient of the projected lens potential for one clump
* !!! You have to multiply by dlsds to obtain the true gradient
* for the expressions, see the papers : JP Kneib & P Natarajan, Cluster Lenses, The Astronomy and Astrophysics Review (2011) for 1 and 2
* and JP Kneib PhD (1993) for 3
*
* @param pImage point where the result is computed in the lens plane
* @param lens mass distribution
*/
//
/// Useful functions
//
complex
piemd_1derivatives_ci05(double x, double y, double eps, double rc)
{
double sqe, cx1, cxro, cyro, rem2;
complex zci, znum, zden, zis, zres;
double norm;
//
//std::cout << "piemd_lderivatives" << std::endl;
sqe = sqrt(eps);
cx1 = (1. - eps) / (1. + eps);
cxro = (1. + eps) * (1. + eps);
cyro = (1. - eps) * (1. - eps);
//
rem2 = x * x / cxro + y * y / cyro;
/*zci=cpx(0.,-0.5*(1.-eps*eps)/sqe);
znum=cpx(cx1*x,(2.*sqe*sqrt(rc*rc+rem2)-y/cx1));
zden=cpx(x,(2.*rc*sqe-y));
zis=pcpx(zci,lncpx(dcpx(znum,zden)));
zres=pcpxflt(zis,b0);*/
// --> optimized code
zci.re = 0;
zci.im = -0.5*(1. - eps*eps)/sqe;
znum.re = cx1 * x;
znum.im = 2.*sqe*sqrt(rc*rc + rem2) - y/cx1;
zden.re = x;
zden.im = 2.*rc * sqe - y;
norm = zden.re * zden.re + zden.im * zden.im; // zis = znum/zden
zis.re = (znum.re * zden.re + znum.im * zden.im) / norm;
zis.im = (znum.im * zden.re - znum.re * zden.im) / norm;
norm = zis.re;
zis.re = log(sqrt(norm * norm + zis.im * zis.im)); // ln(zis) = ln(|zis|)+i.Arg(zis)
zis.im = atan2(zis.im, norm);
// norm = zis.re;
zres.re = zci.re * zis.re - zci.im * zis.im; // Re( zci*ln(zis) )
zres.im = zci.im * zis.re + zis.im * zci.re; // Im( zci*ln(zis) )
//
//zres.re = zis.re*b0;
//zres.im = zis.im*b0;
//
return(zres);
}
//
//// changes the coordinates of point P into a new basis (rotation of angle theta)
//// y' y x'
//// * | /
//// * | / theta
//// * | /
//// *|--------->x
/*
inline
struct point rotateCoordinateSystem(struct point P, double theta)
{
struct point Q;
Q.x = P.x*cos(theta) + P.y*sin(theta);
Q.y = P.y*cos(theta) - P.x*sin(theta);
return(Q);
}
*/
//
//
struct point
grad_halo(const struct point *pImage, const struct Potential *lens)
{
struct point true_coord, true_coord_rot, result;
double X, Y, R, angular_deviation, u;
complex zis;
//
result.x = result.y = 0.;
//
/*positionning at the potential center*/
// Change the origin of the coordinate system to the center of the clump
true_coord.x = pImage->x - lens->position.x;
true_coord.y = pImage->y - lens->position.y;
//printf("x, y = %f, %f\n", lens->position.x, lens->position.y);
//
true_coord_rot = rotateCoordinateSystem(true_coord, lens->ellipticity_angle);
//
switch (lens->type)
{
case(5): /*Elliptical Isothermal Sphere*/
/*rotation of the coordiante axes to match the potential axes*/
//true_coord_rotation = rotateCoordinateSystem(true_coord, lens->ellipticity_angle);
//
R=sqrt(true_coord_rot.x*true_coord_rot.x*(1 - lens->ellipticity/3.) + true_coord_rot.y*true_coord_rot.y*(1 + lens->ellipticity/3.)); //ellippot = ellipmass/3
result.x = (1 - lens->ellipticity/3.)*lens->b0*true_coord_rot.x/(R);
result.y = (1 + lens->ellipticity/3.)*lens->b0*true_coord_rot.y/(R);
break;
case(8): /* PIEMD */
/*rotation of the coordiante axes to match the potential axes*/
/*Doing something....*/
complex zis = piemd_1derivatives_ci05(true_coord_rot.x, true_coord_rot.y, lens->ellipticity_potential, lens->rcore);
//
result.x = lens->b0*zis.re;
result.y = lens->b0*zis.im;
break;
case(81): //PIEMD Kassiola & Kovner,1993 I0.5c-I0.5cut
double t05;
if ( lens->ellipticity_potential > 2E-4 )
{
//printf("1 ");
t05 = lens->b0*lens->rcut/(lens->rcut - lens->rcore);
complex zis = piemd_1derivatives_ci05(true_coord_rot.x, true_coord_rot.y, lens->ellipticity_potential, lens->rcore);
complex zis_cut = piemd_1derivatives_ci05(true_coord_rot.x, true_coord_rot.y, lens->ellipticity_potential, lens->rcut);
result.x = t05 * (zis.re - zis_cut.re);
result.y = t05 * (zis.im - zis_cut.im);
//printf(" g = %f %f\n", result.x, result.y);
}
else if (( u = true_coord_rot.x*true_coord_rot.x + true_coord_rot.y*true_coord_rot.y) > 0. )
{
//printf("2 ");
// Circular dPIE Elliasdottir 2007 Eq A23 slighly modified for t05
X = lens->rcore;
Y = lens->rcut;
t05 = sqrt(u + X * X) - X - sqrt(u + Y * Y) + Y; // Faster and equiv to Elliasdottir (see Golse PhD)
t05 *= lens->b0 * Y / (Y - X) / u; // 1/u because t05/sqrt(u) and normalised Q/sqrt(u)
result.x = t05*true_coord_rot.x;
result.y = t05*true_coord_rot.y;
}
else
{
//printf("3 ");
result.x = 0.;
result.y = 0.;
}
break;
default:
std::cout << "ERROR: Grad 1 profil type of clump "<< lens->name << " unknown : "<< lens->type << std::endl;
break;
};
result = rotateCoordinateSystem(result, -lens->ellipticity_angle);
//printf(" rot grad = %f %f\n", result.x, result.y);
return result;
}
//
//
//
struct point module_potentialDerivatives_totalGradient(const int nhalos, const struct point* pImage, const struct Potential* lens)
{
struct point grad, clumpgrad;
//
grad.x = 0;
grad.y = 0;
//
for(int i = 0; i < nhalos; i++)
{
clumpgrad = grad_halo(pImage, &lens[i]); //compute gradient for each clump separately
//std::cout << clumpgrad.x << " " << clumpgrad.y << std::endl;
//nan check
//if(clumpgrad.x == clumpgrad.x or clumpgrad.y == clumpgrad.y)
{
// add the gradients
grad.x += clumpgrad.x;
grad.y += clumpgrad.y;
}
}
//
return(grad);
}
//
// SOA versions, vectorizable
//
struct point module_potentialDerivatives_totalGradient_5_SOA(const struct point *pImage, const struct Potential_SOA *lens, int shalos, int nhalos)
{
asm volatile("# module_potentialDerivatives_totalGradient_SIS_SOA begins");
//
struct point grad, clumpgrad;
grad.x = 0;
grad.y = 0;
for(int i = shalos; i < shalos + nhalos; i++)
{
//
struct point true_coord, true_coord_rotation;
//
true_coord.x = pImage->x - lens->position_x[i];
true_coord.y = pImage->y - lens->position_y[i];
//
true_coord_rotation = rotateCoordinateSystem(true_coord, lens->ellipticity_angle[i]);
double R = sqrt(true_coord_rotation.x*true_coord_rotation.x*(1 - lens->ellipticity_potential[i])+true_coord_rotation.y*true_coord_rotation.y*(1 + lens->ellipticity_potential[i]));
//
grad.x += (1 - lens->ellipticity[i]/3.)*lens->b0[i]*true_coord_rotation.x/R;
grad.y += (1 + lens->ellipticity[i]/3.)*lens->b0[i]*true_coord_rotation.y/R;
}
return grad;
}
//
//
//
struct point module_potentialDerivatives_totalGradient_8_SOA(const struct point *pImage, const struct Potential_SOA *lens, int shalos, int nhalos)
{
asm volatile("# module_potentialDerivatives_totalGradient_SOA begins");
// 6 DP loads, i.e. 48 Bytes: position_x, position_y, ellipticity_angle, ellipticity_potential, rcore, b0
//
struct point grad, clumpgrad;
grad.x = 0;
grad.y = 0;
//
for(int i = shalos; i < shalos + nhalos; i++)
{
//IACA_START;
//
struct point true_coord, true_coord_rot; //, result;
//double R, angular_deviation;
complex zis;
//
//result.x = result.y = 0.;
//
//@@printf("image_x = %f image_y = %f\n", pImage->x, pImage->y);
true_coord.x = pImage->x - lens->position_x[i];
true_coord.y = pImage->y - lens->position_y[i];
//printf("x = %f y = %f\n", true_coord.x, true_coord.y);
/*positionning at the potential center*/
// Change the origin of the coordinate system to the center of the clump
true_coord_rot = rotateCoordinateSystem(true_coord, lens->ellipticity_angle[i]);
//
double x = true_coord_rot.x;
double y = true_coord_rot.y;
//@@printf("x = %f y = %f\n", x, y);
double eps = lens->ellipticity_potential[i];
double rc = lens->rcore[i];
//
//std::cout << "piemd_lderivatives" << std::endl;
//
double sqe = sqrt(eps);
//
double cx1 = (1. - eps)/(1. + eps);
double cxro = (1. + eps)*(1. + eps);
double cyro = (1. - eps)*(1. - eps);
//
double rem2 = x*x/cxro + y*y/cyro;
//
complex zci, znum, zden, zres;
double norm;
//
zci.re = 0;
zci.im = -0.5*(1. - eps*eps)/sqe;
//@@printf("zci = %f %f\n", zci.re, zci.im);
//
znum.re = cx1*x;
znum.im = 2.*sqe*sqrt(rc*rc + rem2) - y/cx1;
//
zden.re = x;
zden.im = 2.*rc*sqe - y;
norm = (zden.re*zden.re + zden.im*zden.im); // zis = znum/zden
//@@printf("norm = %f\n", norm);
//
zis.re = (znum.re*zden.re + znum.im*zden.im)/norm;
zis.im = (znum.im*zden.re - znum.re*zden.im)/norm;
//@@printf("zis = %f %f\n", zis.re, zis.im);
norm = zis.re;
zis.re = log(sqrt(norm*norm + zis.im*zis.im)); // ln(zis) = ln(|zis|)+i.Arg(zis)
zis.im = atan2(zis.im, norm);
//@@printf("y,x = %f %f\n", zis.im, norm);
// norm = zis.re;
zres.re = zci.re*zis.re - zci.im*zis.im; // Re( zci*ln(zis) )
zres.im = zci.im*zis.re + zis.im*zci.re; // Im( zci*ln(zis) )
//
//@@printf("zres: %f %f\n", zres.re, zres.im);
//
zis.re = zres.re;
zis.im = zres.im;
//
//zres.re = zis.re*b0;
//zres.im = zis.im*b0;
// rotation
clumpgrad.x = zis.re;
clumpgrad.y = zis.im;
clumpgrad = rotateCoordinateSystem(clumpgrad, -lens->ellipticity_angle[i]);
//
clumpgrad.x = lens->b0[i]*clumpgrad.x;
clumpgrad.y = lens->b0[i]*clumpgrad.y;
//
//clumpgrad.x = lens->b0[i]*zis.re;
//clumpgrad.y = lens->b0[i]*zis.im;
//nan check
//if(clumpgrad.x == clumpgrad.x or clumpgrad.y == clumpgrad.y)
//{
// add the gradients
grad.x += clumpgrad.x;
grad.y += clumpgrad.y;
//@@printf("grad: %f %f\n", grad.x, grad.y);
//@@std::cout << "grad.x = " << grad.x << " grad.y = " << grad.y << std::endl;
//}
}
//IACA_END;
//
return(grad);
}
//
//
//
struct point module_potentialDerivatives_totalGradient_8_SOA_v2(const struct point *pImage, const struct Potential_SOA *lens, int shalos, int nhalos)
{
asm volatile("# module_potentialDerivatives_totalGradient_8_SOA_v2 begins");
//std::cout << "# module_potentialDerivatives_totalGradient_8_SOA_v2 begins" << std::endl;
//
// 6 DP loads, i.e. 48 Bytes: position_x, position_y, ellipticity_angle, ellipticity_potential, rcore, b0
//
struct point grad, clumpgrad;
grad.x = 0;
grad.y = 0;
//printf("%d %d\n", shalos, nhalos);
//
for(int i = shalos; i < shalos + nhalos; i++)
{
//IACA_START;
//
struct point true_coord, true_coord_rot; //, result;
complex zis;
double b0 = lens->b0[i];
//
true_coord.x = pImage->x - lens->position_x[i];
true_coord.y = pImage->y - lens->position_y[i];
//
//true_coord_rot = rotateCoordinateSystem(true_coord, lens->ellipticity_angle[i]);
//
double cose = lens->anglecos[i];
double sine = lens->anglesin[i];
//
double x = true_coord.x*cose + true_coord.y*sine;
double y = true_coord.y*cose - true_coord.x*sine;
//
//double x = true_coord_rot.x;
//double y = true_coord_rot.y;
//@@printf("x = %f y = %f\n", x, y);
double eps = lens->ellipticity_potential[i];
double rc = lens->rcore[i];
//
double sqe = sqrt(eps);
//
double cx1 = (1. - eps)/(1. + eps);
double cxro = (1. + eps)*(1. + eps);
double cyro = (1. - eps)*(1. - eps);
//
double rem2 = x*x/cxro + y*y/cyro;
//
complex zci, znum, zden, zres;
double norm;
//
zci.re = 0;
zci.im = -0.5*(1. - eps*eps)/sqe;
//
//
#if 1
KERNEL(rc, zres)
#else
znum.re = cx1*x;
znum.im = 2.*sqe*sqrt(rc*rc + rem2) - y/cx1;
//
zden.re = x;
zden.im = 2.*rc*sqe - y;
norm = (zden.re*zden.re + zden.im*zden.im); // zis = znum/zden
//
zis.re = (znum.re*zden.re + znum.im*zden.im)/norm;
zis.im = (znum.im*zden.re - znum.re*zden.im)/norm;
//
norm = zis.re;
zis.re = log(sqrt(norm*norm + zis.im*zis.im)); // ln(zis) = ln(|zis|)+i.Arg(zis)
zis.im = atan2(zis.im, norm);
// norm = zis.re;
zres.re = zci.re*zis.re - zci.im*zis.im; // Re( zci*ln(zis) )
zres.im = zci.im*zis.re + zis.im*zci.re; // Im( zci*ln(zis) )
//
zis.re = zres.re;
zis.im = zres.im;
#endif
//
//grad.x += b0*(zres.re*cose - zres.im*sine);
//grad.y += b0*(zres.im*cose + zres.re*sine);
grad.x += b0*(zres.re*cose - zres.im*sine);
grad.y += b0*(zres.im*cose + zres.re*sine);
//
}
//IACA_END;
//
return(grad);
}
//
//
//
struct point module_potentialDerivatives_totalGradient_81_SOA(const struct point *pImage, const struct Potential_SOA *lens, int shalos, int nhalos)
{
asm volatile("# module_potentialDerivatives_totalGradient_81_SOA begins");
//std::cout << "# module_potentialDerivatives_totalGradient_SOA begins" << std::endl;
// 6 DP loads, i.e. 48 Bytes: position_x, position_y, ellipticity_angle, ellipticity_potential, rcore, b0
//
struct point grad, clumpgrad;
grad.x = 0;
grad.y = 0;
for(int i = shalos; i < shalos + nhalos; i++)
{
//IACA_START;
//
struct point true_coord, true_coord_rot; //, result;
//double R, angular_deviation;
complex zis;
//
//result.x = result.y = 0.;
//
true_coord.x = pImage->x - lens->position_x[i];
true_coord.y = pImage->y - lens->position_y[i];
/*positionning at the potential center*/
// Change the origin of the coordinate system to the center of the clump
true_coord_rot = rotateCoordinateSystem(true_coord, lens->ellipticity_angle[i]);
//
double x = true_coord_rot.x;
double y = true_coord_rot.y;
double eps = lens->ellipticity_potential[i];
double rc = lens->rcore[i];
double rcut = lens->rcut[i];
double b0 = lens->b0[i];
double t05 = b0*rcut/(rcut - rc);
//
double sqe = sqrt(eps);
//
double cx1 = (1. - eps)/(1. + eps);
double cxro = (1. + eps)*(1. + eps);
double cyro = (1. - eps)*(1. - eps);
//
double rem2 = x*x/cxro + y*y/cyro;
//
complex zci, znum, zden, zres_rc, zres_rcut;
double norm;
//
zci.re = 0;
zci.im = -0.5*(1. - eps*eps)/sqe;
// step 1
{
#if 1
KERNEL(rc, zres_rc)
#else
znum.re = cx1*x;
znum.im = 2.*sqe*sqrt(rc*rc + rem2) - y/cx1;
//
zden.re = x;
zden.im = 2.*rc*sqe - y;
norm = (zden.re*zden.re + zden.im*zden.im); // zis = znum/zden
//
zis.re = (znum.re*zden.re + znum.im*zden.im)/norm;
zis.im = (znum.im*zden.re - znum.re*zden.im)/norm;
norm = zis.re;
zis.re = log(sqrt(norm*norm + zis.im*zis.im)); // ln(zis) = ln(|zis|)+i.Arg(zis)
zis.im = atan2(zis.im, norm);
// norm = zis.re;
zres_rc.re = zci.re*zis.re - zci.im*zis.im; // Re( zci*ln(zis) )
zres_rc.im = zci.im*zis.re + zis.im*zci.re; // Im( zci*ln(zis) )
#endif
}
// step 2
{
#if 1
KERNEL(rcut, zres_rcut)
#else
znum.re = cx1*x;
znum.im = 2.*sqe*sqrt(rcut*rcut + rem2) - y/cx1;
//
zden.re = x;
zden.im = 2.*rcut*sqe - y;
norm = (zden.re*zden.re + zden.im*zden.im); // zis = znum/zden
//
zis.re = (znum.re*zden.re + znum.im*zden.im)/norm;
zis.im = (znum.im*zden.re - znum.re*zden.im)/norm;
norm = zis.re;
zis.re = log(sqrt(norm*norm + zis.im*zis.im)); // ln(zis) = ln(|zis|)+i.Arg(zis)
zis.im = atan2(zis.im, norm);
//
zres_rcut.re = zci.re*zis.re - zci.im*zis.im; // Re( zci*ln(zis) )
zres_rcut.im = zci.im*zis.re + zis.im*zci.re; // Im( zci*ln(zis) )
#endif
}
zis.re = t05*(zres_rc.re - zres_rcut.re);
zis.im = t05*(zres_rc.im - zres_rcut.im);
// rotation
clumpgrad.x = zis.re;
clumpgrad.y = zis.im;
clumpgrad = rotateCoordinateSystem(clumpgrad, -lens->ellipticity_angle[i]);
//
grad.x += clumpgrad.x;
grad.y += clumpgrad.y;
//}
}
//IACA_END;
//
return(grad);
}
//
//
//
struct point module_potentialDerivatives_totalGradient_81_SOA_v2(const struct point *pImage, const struct Potential_SOA *lens, int shalos, int nhalos)
{
asm volatile("# module_potentialDerivatives_totalGradient_81_SOA begins");
//std::cout << "# module_potentialDerivatives_totalGradient_81_SOA begins" << std::endl;
// 6 DP loads, i.e. 48 Bytes: position_x, position_y, ellipticity_angle, ellipticity_potential, rcore, b0
//
struct point grad, clumpgrad;
grad.x = 0;
grad.y = 0;
for(int i = shalos; i < shalos + nhalos; i++)
{
//IACA_START;
//
struct point true_coord, true_coord_rot; //, result;
//double R, angular_deviation;
complex zis;
//
//result.x = result.y = 0.;
//
true_coord.x = pImage->x - lens->position_x[i];
true_coord.y = pImage->y - lens->position_y[i];
/*positionning at the potential center*/
// Change the origin of the coordinate system to the center of the clump
//true_coord_rot = rotateCoordinateSystem(true_coord, lens->ellipticity_angle[i]);
//
//double x = true_coord_rot.x;
//double y = true_coord_rot.y;
//
double cose = lens->anglecos[i];
double sine = lens->anglesin[i];
double x = true_coord.x*cose + true_coord.y*sine;
double y = true_coord.y*cose - true_coord.x*sine;
//
double eps = lens->ellipticity_potential[i];
double rc = lens->rcore[i];
double rcut = lens->rcut[i];
double b0 = lens->b0[i];
double t05 = b0*rcut/(rcut - rc);
//
double sqe = sqrt(eps);
//
double cx1 = (1. - eps)/(1. + eps);
double cxro = (1. + eps)*(1. + eps);
double cyro = (1. - eps)*(1. - eps);
//
double rem2 = x*x/cxro + y*y/cyro;
//
complex zci, znum, zden, zres_rc, zres_rcut;
double norm;
//
zci.re = 0;
zci.im = -0.5*(1. - eps*eps)/sqe;
// step 1
{
#if 0
KERNEL(rc, zres_rc)
#else
znum.re = cx1*x;
znum.im = 2.*sqe*sqrt(rc*rc + rem2) - y/cx1;
//
zden.re = x;
zden.im = 2.*rc*sqe - y;
norm = (zden.re*zden.re + zden.im*zden.im); // zis = znum/zden
//
zis.re = (znum.re*zden.re + znum.im*zden.im)/norm;
zis.im = (znum.im*zden.re - znum.re*zden.im)/norm;
norm = zis.re;
zis.re = log(sqrt(norm*norm + zis.im*zis.im)); // ln(zis) = ln(|zis|)+i.Arg(zis)
zis.im = atan2(zis.im, norm);
// norm = zis.re;
zres_rc.re = zci.re*zis.re - zci.im*zis.im; // Re( zci*ln(zis) )
zres_rc.im = zci.im*zis.re + zis.im*zci.re; // Im( zci*ln(zis) )
#endif
}
// step 2
{
#if 0
KERNEL(rcut, zres_rcut)
#else
znum.re = cx1*x;
znum.im = 2.*sqe*sqrt(rcut*rcut + rem2) - y/cx1;
//
zden.re = x;
zden.im = 2.*rcut*sqe - y;
norm = (zden.re*zden.re + zden.im*zden.im); // zis = znum/zden
//
zis.re = (znum.re*zden.re + znum.im*zden.im)/norm;
zis.im = (znum.im*zden.re - znum.re*zden.im)/norm;
norm = zis.re;
zis.re = log(sqrt(norm*norm + zis.im*zis.im)); // ln(zis) = ln(|zis|)+i.Arg(zis)
zis.im = atan2(zis.im, norm);
//
zres_rcut.re = zci.re*zis.re - zci.im*zis.im; // Re( zci*ln(zis) )
zres_rcut.im = zci.im*zis.re + zis.im*zci.re; // Im( zci*ln(zis) )
#endif
}
zis.re = t05*(zres_rc.re - zres_rcut.re);
zis.im = t05*(zres_rc.im - zres_rcut.im);
// rotation
grad.x += (zis.re*cose - zis.im*sine);
grad.y += (zis.im*cose + zis.re*sine);
//
}
//
return(grad);
}
//
//
//
typedef struct point (*halo_func_t) (const struct point *pImage, const struct Potential_SOA *lens, int shalos, int nhalos);
halo_func_t halo_func[100] =
{
0, 0, 0, 0, 0, module_potentialDerivatives_totalGradient_5_SOA, 0, 0, module_potentialDerivatives_totalGradient_8_SOA_v2, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, module_potentialDerivatives_totalGradient_81_SOA_v2, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
//
//
//
struct point module_potentialDerivatives_totalGradient_SOA(const struct point *pImage, const struct Potential_SOA *lens, int nhalos)
{
struct point grad, clumpgrad;
//
grad.x = clumpgrad.x = 0;
grad.y = clumpgrad.y = 0;
//
int shalos = 0;
//
//module_potentialDerivatives_totalGradient_81_SOA(pImage, lens, 0, nhalos);
//return;
/*
int* p_type = &(lens->type)[0];
int* lens_type = (int*) malloc(nhalos*sizeof(int));
memcpy(lens_type, &(lens->type)[0], nhalos*sizeof(int));
*/
//quicksort(lens_type, nhalos);
//
while (shalos < nhalos)
{
int lens_type = lens->type[shalos];
int count = 1;
while (lens->type[shalos + count] == lens_type) count++;
//std::cerr << "type = " << lens_type << " " << count << " " << shalos << std::endl;
//
clumpgrad = (*halo_func[lens_type])(pImage, lens, shalos, count);
//
grad.x += clumpgrad.x;
grad.y += clumpgrad.y;
shalos += count;
}
return(grad);
}
Event Timeline
Log In to Comment