Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91370707
kite_identification_test.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 10, 10:49
Size
13 KB
Mime Type
text/x-c
Expires
Tue, Nov 12, 10:49 (2 d)
Engine
blob
Format
Raw Data
Handle
22252071
Attached To
R1517 test_package
kite_identification_test.cpp
View Options
#include "kiteNMPF.h"
#include "integrator.h"
#define BOOST_TEST_TOOLS_UNDER_DEBUGGER
#define BOOST_TEST_MODULE kite_identification_test
#include <boost/test/included/unit_test.hpp>
#include <fstream>
#include "pseudospectral/chebyshev.hpp"
using namespace casadi;
BOOST_AUTO_TEST_SUITE( kite_identification_test )
BOOST_AUTO_TEST_CASE( first_id_test )
{
/** Load identification data */
std::ifstream id_data_file("id_data_state.txt", std::ios::in);
std::ifstream id_control_file("id_data_control.txt", std::ios::in);
const int DATA_POINTS = 61;
DM id_data = DM::zeros(13, DATA_POINTS);
DM id_control = DM::zeros(3, DATA_POINTS);
/** load state trajectory */
if(!id_data_file.fail())
{
for(uint i = 0; i < DATA_POINTS; ++i) {
for(uint j = 0; j < 13; ++j){
double entry;
id_data_file >> entry;
id_data(j,i) = entry;
}
}
}
else
{
std::cout << "Could not open : id state data file \n";
id_data_file.clear();
}
/** load control data */
if(!id_control_file.fail())
{
for(uint i = 0; i < DATA_POINTS; ++i){
for(uint j = 0; j < 3; ++j){
double entry;
id_control_file >> entry;
/** put in reverse order to comply with Chebyshev method */
id_control(j,DATA_POINTS - 1 - i) = entry;
}
}
}
else
{
std::cout << "Could not open : id control data file \n";
id_control_file.clear();
}
/** define kite dynamics */
std::string kite_params_file = "umx_radian_matlab.yaml";
KiteProperties kite_props = kite_utils::LoadProperties(kite_params_file);
AlgorithmProperties algo_props;
algo_props.Integrator = CVODES;
algo_props.sampling_time = 0.02;
std::shared_ptr<KiteDynamics> kite = std::make_shared<KiteDynamics>(kite_props, algo_props, true);
std::shared_ptr<KiteDynamics> kite_int = std::make_shared<KiteDynamics>(kite_props, algo_props); //integration model
Function ode = kite_int->getNumericDynamics();
/** get dynamics function and state Jacobian */
Function DynamicsFunc = kite->getNumericDynamics();
SX X = kite->getSymbolicState();
SX U = kite->getSymbolicControl();
SX P = kite->getSymbolicParameters();
/** state bounds */
DM LBX = DM::vertcat({2.0, -DM::inf(1), -DM::inf(1), -4 * M_PI, -4 * M_PI, -4 * M_PI, -DM::inf(1), -DM::inf(1), -DM::inf(1),
-1.05, -1.05, -1.05, -1.05});
DM UBX = DM::vertcat({DM::inf(1), DM::inf(1), DM::inf(1), 4 * M_PI, 4 * M_PI, 4 * M_PI, DM::inf(1), DM::inf(1), DM::inf(1),
1.05, 1.05, 1.05, 1.05});
/** control bounds */
DM LBU = DM::vec(id_control);
DM UBU = DM::vec(id_control);
/** parameter bounds */
YAML::Node config = YAML::LoadFile("umx_radian3.yaml");
double CL0 = config["aerodynamic"]["CL0"].as<double>();
double CLa_tot = config["aerodynamic"]["CLa_total"].as<double>();
double CD0_tot = config["aerodynamic"]["CD0_total"].as<double>();
double CYb = config["aerodynamic"]["CYb"].as<double>();
double Cm0 = config["aerodynamic"]["Cm0"].as<double>();
double Cma = config["aerodynamic"]["Cma"].as<double>();
double Cnb = config["aerodynamic"]["Cnb"].as<double>();
double Clb = config["aerodynamic"]["Clb"].as<double>();
double CLq = config["aerodynamic"]["CLq"].as<double>();
double Cmq = config["aerodynamic"]["Cmq"].as<double>();
double CYr = config["aerodynamic"]["CYr"].as<double>();
double Cnr = config["aerodynamic"]["Cnr"].as<double>();
double Clr = config["aerodynamic"]["Clr"].as<double>();
double CYp = config["aerodynamic"]["CYp"].as<double>();
double Clp = config["aerodynamic"]["Clp"].as<double>();
double Cnp = config["aerodynamic"]["Cnp"].as<double>();
double CLde = config["aerodynamic"]["CLde"].as<double>();
double CYdr = config["aerodynamic"]["CYdr"].as<double>();
double Cmde = config["aerodynamic"]["Cmde"].as<double>();
double Cndr = config["aerodynamic"]["Cndr"].as<double>();
double Cldr = config["aerodynamic"]["Cldr"].as<double>();
double Lt = config["tether"]["length"].as<double>();
double Ks = config["tether"]["Ks"].as<double>();
double Kd = config["tether"]["Kd"].as<double>();
double rx = config["tether"]["rx"].as<double>();
double rz = config["tether"]["rz"].as<double>();
DM REF_P = DM::vertcat({CL0, CLa_tot, CD0_tot, CYb, Cm0, Cma, Cnb, Clb, CLq, Cmq,
CYr, Cnr, Clr, CYp, Clp, Cnp, CLde, CYdr, Cmde, Cndr, Cldr});
DM LBP = REF_P; DM UBP = REF_P;
LBP = -DM::inf(21);
UBP = DM::inf(21);
/*
LBP[0] = REF_P[0] - 0.1 * fabs(REF_P[0]); UBP[0] = REF_P[0] + 0.1 * fabs(REF_P[0]); // CL0
LBP[1] = REF_P[1] - 0.05 * fabs(REF_P[1]); UBP[1] = REF_P[1] + 0.1 * fabs(REF_P[1]); // CLa
LBP[2] = REF_P[2] - 0.1 * fabs(REF_P[2]); UBP[2] = REF_P[2] + 0.25 * fabs(REF_P[2]); // CD0
LBP[3] = REF_P[3] - 0.5 * fabs(REF_P[3]); UBP[3] = REF_P[3] + 0.5 * fabs(REF_P[3]); // CYb
LBP[4] = REF_P[4] - 0.5 * fabs(REF_P[4]); UBP[4] = REF_P[4] + 0.5 * fabs(REF_P[4]); // Cm0
LBP[5] = REF_P[5] - 0.1 * fabs(REF_P[5]); UBP[5] = REF_P[5] + 0.30 * fabs(REF_P[5]); // Cma
LBP[6] = REF_P[6] - 0.5 * fabs(REF_P[6]); UBP[6] = REF_P[6] + 0.5 * fabs(REF_P[6]); // Cnb
LBP[7] = REF_P[7] - 0.5 * fabs(REF_P[7]); UBP[7] = REF_P[7] + 0.5 * fabs(REF_P[7]); // Clb
LBP[8] = REF_P[8] - 0.2 * fabs(REF_P[8]); UBP[8] = REF_P[8] + 0.2 * fabs(REF_P[8]); // CLq
LBP[9] = REF_P[9] - 0.3 * fabs(REF_P[9]); UBP[9] = REF_P[9] + 0.3 * fabs(REF_P[9]); // Cmq
LBP[10] = REF_P[10] - 0.3 * fabs(REF_P[10]); UBP[10] = REF_P[10] + 0.3 * fabs(REF_P[10]); // CYr
LBP[11] = REF_P[11] - 0.5 * fabs(REF_P[11]); UBP[11] = REF_P[11] + 0.5 * fabs(REF_P[11]); // Cnr
LBP[12] = REF_P[12] - 0.5 * fabs(REF_P[12]); UBP[12] = REF_P[12] + 0.5 * fabs(REF_P[12]); // Clr
LBP[13] = REF_P[13] - 0.5 * fabs(REF_P[13]); UBP[13] = REF_P[13] + 0.5 * fabs(REF_P[13]); // CYp
LBP[14] = REF_P[14] - 0.5 * fabs(REF_P[14]); UBP[14] = REF_P[14] + 0.5 * fabs(REF_P[14]); // Clp
LBP[15] = REF_P[15] - 0.3 * fabs(REF_P[15]); UBP[15] = REF_P[15] + 1.0 * fabs(REF_P[15]); // Cnp
LBP[16] = REF_P[16] - 0.5 * fabs(REF_P[16]); UBP[16] = REF_P[16] + 0.5 * fabs(REF_P[16]); // CLde
LBP[17] = REF_P[17] - 0.5 * fabs(REF_P[17]); UBP[17] = REF_P[17] + 0.5 * fabs(REF_P[17]); // CYdr
LBP[18] = REF_P[18] - 0.5 * fabs(REF_P[18]); UBP[18] = REF_P[18] + 0.5 * fabs(REF_P[18]); // Cmde
LBP[19] = REF_P[19] - 0.5 * fabs(REF_P[19]); UBP[19] = REF_P[19] + 0.5 * fabs(REF_P[19]); // Cndr
LBP[20] = REF_P[20] - 0.5 * fabs(REF_P[20]); UBP[20] = REF_P[20] + 0.5 * fabs(REF_P[20]); // Cldr
*/
// LBP[21] = 2.65; UBP[21] = 2.75; // tether length
// LBP[22] = 150.0; UBP[22] = 150.0; // Ks
// LBP[23] = 0.0; UBP[23] = 10; // Kd
// LBP[24] = 0.0; UBP[24] = 0.0; // rx
// LBP[25] = 0.0; UBP[25] = 0.0; // rz
std::cout << "OK so far \n";
/** ----------------------------------------------------------------------------------*/
const int num_segments = 2;
const int poly_order = 30;
const int dimx = 13;
const int dimu = 3;
const int dimp = 21;
const double tf = 3.0;
Chebyshev<SX, poly_order, num_segments, dimx, dimu, dimp> spectral;
SX diff_constr = spectral.CollocateDynamics(DynamicsFunc, 0, tf);
diff_constr = diff_constr(casadi::Slice(0, num_segments * poly_order * dimx));
SX varx = spectral.VarX();
SX varu = spectral.VarU();
SX varp = spectral.VarP();
SX opt_var = SX::vertcat(SXVector{varx, varu, varp});
SX lbg = SX::zeros(diff_constr.size());
SX ubg = SX::zeros(diff_constr.size());
/** set inequality (box) constraints */
/** state */
SX lbx = SX::repmat(LBX, num_segments * poly_order + 1, 1);
SX ubx = SX::repmat(UBX, num_segments * poly_order + 1, 1);
/** control */
lbx = SX::vertcat({lbx, LBU});
ubx = SX::vertcat({ubx, UBU});
/** parameters */
lbx = SX::vertcat({lbx, LBP});
ubx = SX::vertcat({ubx, UBP});
DM Q = SX::diag(SX({1e3, 1e2, 1e2, 1e2, 1e2, 1e2, 1e1, 1e1, 1e1, 1e1, 1e1, 1e1, 1e1})); //good one as well
//DM Q = 1e1 * DM::eye(13);
double alpha = 100.0;
SX fitting_error = 0;
SX varx_ = SX::reshape(varx, 13, DATA_POINTS);
for (uint j = 0; j < DATA_POINTS; ++j)
{
SX measurement = id_data(Slice(0, id_data.size1()), j);
SX error = measurement - varx_(Slice(0, varx_.size1()), varx_.size2() - j - 1);
fitting_error = fitting_error + (1 / DATA_POINTS) * SX::sumRows( SX::mtimes(Q, pow(error, 2)) );
}
/** add regularisation */
fitting_error = fitting_error + alpha * SX::dot(varp - SX({REF_P}), varp - SX({REF_P}));
/** alternative approximation */
SX x = SX::sym("x",13);
SX y = SX::sym("y",13);
SX cost_function = SX::sumRows( SX::mtimes(Q, pow(x - y, 2)) );
Function IdCost = Function("IdCost",{x,y}, {cost_function});
SX fitting_error2 = spectral.CollocateIdCost(IdCost, id_data, 0, tf);
fitting_error2 = fitting_error2 + alpha * SX::dot(varp - SX({REF_P}), varp - SX({REF_P}));
/** formulate NLP */
SXDict NLP;
Dict OPTS;
DMDict ARG;
NLP["x"] = opt_var;
NLP["f"] = fitting_error;
NLP["g"] = diff_constr;
OPTS["ipopt.linear_solver"] = "ma97";
OPTS["ipopt.print_level"] = 5;
OPTS["ipopt.tol"] = 1e-4;
OPTS["ipopt.acceptable_tol"] = 1e-4;
OPTS["ipopt.warm_start_init_point"] = "yes";
//OPTS["ipopt.max_iter"] = 20;
Function NLP_Solver = nlpsol("solver", "ipopt", NLP, OPTS);
/** set default args */
ARG["lbx"] = lbx;
ARG["ubx"] = ubx;
ARG["lbg"] = lbg;
ARG["ubg"] = ubg;
/** provide initial guess from integrator */
casadi::DMDict props;
props["scale"] = 0;
props["P"] = casadi::DM::diag(casadi::DM({0.1, 1/3.0, 1/3.0, 1/2.0, 1/5.0, 1/2.0, 1/3.0, 1/3.0, 1/3.0, 1.0, 1.0, 1.0, 1.0}));
props["R"] = casadi::DM::diag(casadi::DM({1/0.15, 1/0.2618, 1/0.2618}));
PSODESolver<poly_order,num_segments,dimx,dimu>ps_solver(ode, tf, props);
DM x0 = id_data(Slice(0, id_data.size1()), 0);
DMDict solution = ps_solver.solve_trajectory(x0, LBU, true);
DM feasible_state = solution.at("x");
//DM feasible_state = DM::reshape(id_data, 13 * (num_segments * poly_order + 1), 1);
//DM feasible_state = DM::repmat(id_data(Slice(0, id_data.size1()), 0), (num_segments * poly_order + 1), 1);
DM feasible_control = (UBU + LBU) / 2;
//ARG["x0"] = DM::vertcat(DMVector{feasible_state, feasible_control, REF_P});
ARG["x0"] = DM::vertcat(DMVector{feasible_state, REF_P});
ARG["lam_g0"] = solution.at("lam_g");
ARG["lam_x0"] = DM::vertcat({solution.at("lam_x"), DM::zeros(REF_P.size1())});
int idx_in = num_segments * poly_order * dimx;
int idx_out = idx_in + dimx;
ARG["lbx"](Slice(idx_in, idx_out), 0) = x0;
ARG["ubx"](Slice(idx_in, idx_out), 0) = x0;
DMDict res = NLP_Solver(ARG);
DM result = res.at("x");
DM new_params = result(Slice(result.size1() - varp.size1(), result.size1()));
std::vector<double> new_params_vec = new_params.nonzeros();
DM trajectory = result(Slice(0, varx.size1()));
//DM trajectory = DM::reshape(traj, DATA_POINTS, dimx );
std::ofstream trajectory_file("estimated_trajectory.txt", std::ios::out);
if(!trajectory_file.fail())
{
for (int i = 0; i < trajectory.size1(); i = i + dimx)
{
std::vector<double> tmp = trajectory(Slice(i, i + dimx),0).nonzeros();
for (uint j = 0; j < tmp.size(); j++)
{
trajectory_file << tmp[j] << " ";
}
trajectory_file << "\n";
}
}
trajectory_file.close();
/** update parameter file */
config["aerodynamic"]["CL0"] = new_params_vec[0];
config["aerodynamic"]["CLa_total"] = new_params_vec[1];
config["aerodynamic"]["CD0_total"] = new_params_vec[2];
config["aerodynamic"]["CYb"] = new_params_vec[3];
config["aerodynamic"]["Cm0"] = new_params_vec[4];
config["aerodynamic"]["Cma"] = new_params_vec[5];
config["aerodynamic"]["Cnb"] = new_params_vec[6];
config["aerodynamic"]["Clb"] = new_params_vec[7];
config["aerodynamic"]["CLq"] = new_params_vec[8];
config["aerodynamic"]["Cmq"] = new_params_vec[9];
config["aerodynamic"]["CYr"] = new_params_vec[10];
config["aerodynamic"]["Cnr"] = new_params_vec[11];
config["aerodynamic"]["Clr"] = new_params_vec[12];
config["aerodynamic"]["CYp"] = new_params_vec[13];
config["aerodynamic"]["Clp"] = new_params_vec[14];
config["aerodynamic"]["Cnp"] = new_params_vec[15];
config["aerodynamic"]["CLde"] = new_params_vec[16];
config["aerodynamic"]["CYdr"] = new_params_vec[17];
config["aerodynamic"]["Cmde"] = new_params_vec[18];
config["aerodynamic"]["Cndr"] = new_params_vec[19];
config["aerodynamic"]["Cldr"] = new_params_vec[20];
// config["tether"]["length"] = new_params_vec[21];
// config["tether"]["Ks"] = new_params_vec[22];
// config["tether"]["Kd"] = new_params_vec[23];
// config["tether"]["rx"] = new_params_vec[24];
// config["tether"]["rz"] = new_params_vec[25];
std::ofstream fout("umx_radian_id.yaml");
fout << config;
BOOST_CHECK(true);
}
BOOST_AUTO_TEST_SUITE_END()
Event Timeline
Log In to Comment