Page MenuHomec4science

proto.h
No OneTemporary

File Metadata

Created
Tue, Jul 16, 13:17
/*! \file proto.h
* \brief this file contains all function prototypes of the code
*/
#ifndef ALLVARS_H
#include "allvars.h"
#endif
#ifdef HAVE_HDF5
#include <hdf5.h>
#endif
void advance_and_find_timesteps(void);
void allocate_commbuffers(void);
void allocate_memory(void);
void begrun(void);
int blockpresent(enum iofields blocknr);
#ifdef BLOCK_SKIPPING
int blockabsent(enum iofields blocknr);
#endif
void catch_abort(int sig);
void catch_fatal(int sig);
void check_omega(void);
void close_outputfiles(void);
int compare_key(const void *a, const void *b);
void compute_accelerations(int mode);
void compute_global_quantities_of_system(void);
void compute_potential(void);
int dens_compare_key(const void *a, const void *b);
void density(int mode);
void density_decouple(void);
void density_evaluate(int i, int mode);
#ifdef CHIMIE
int stars_dens_compare_key(const void *a, const void *b);
void stars_density(void);
void stars_density_evaluate(int i, int mode);
#endif
void distribute_file(int nfiles, int firstfile, int firsttask, int lasttask, int *filenr, int *master, int *last);
double dmax(double, double);
double dmin(double, double);
void do_box_wrapping(void);
void domain_Decomposition(void);
int domain_compare_key(const void *a, const void *b);
int domain_compare_key(const void *a, const void *b);
int domain_compare_toplist(const void *a, const void *b);
void domain_countToGo(void);
void domain_decompose(void);
void domain_determineTopTree(void);
void domain_exchangeParticles(int partner, int sphflag, int send_count, int recv_count);
void domain_findExchangeNumbers(int task, int partner, int sphflag, int *send, int *recv);
void domain_findExtent(void);
int domain_findSplit(int cpustart, int ncpu, int first, int last);
int domain_findSplityr(int cpustart, int ncpu, int first, int last);
void domain_shiftSplit(void);
void domain_shiftSplityr(void);
void domain_sumCost(void);
void domain_topsplit(int node, peanokey startkey);
void domain_topsplit_local(int node, peanokey startkey);
double drift_integ(double a, void *param);
void dump_particles(void);
void empty_read_buffer(enum iofields blocknr, int offset, int pc, int type);
void endrun(int);
void energy_statistics(void);
#ifdef ADVANCEDSTATISTICS
void advanced_energy_statistics(void);
#endif
void every_timestep_stuff(void);
void ewald_corr(double dx, double dy, double dz, double *fper);
void ewald_force(int ii, int jj, int kk, double x[3], double force[3]);
void ewald_init(void);
double ewald_pot_corr(double dx, double dy, double dz);
double ewald_psi(double x[3]);
void fill_Tab_IO_Labels(void);
void fill_write_buffer(enum iofields blocknr, int *pindex, int pc, int type);
void find_dt_displacement_constraint(double hfac);
int find_files(char *fname);
int find_next_outputtime(int time);
void find_next_sync_point_and_drift(void);
void force_create_empty_nodes(int no, int topnode, int bits, int x, int y, int z, int *nodecount, int *nextfree);
void force_exchange_pseudodata(void);
void force_flag_localnodes(void);
void force_insert_pseudo_particles(void);
void force_setupnonrecursive(int no);
void force_treeallocate(int maxnodes, int maxpart);
int force_treebuild(int npart);
int force_treebuild_single(int npart);
int force_treeevaluate(int target, int mode, double *ewaldcountsum);
int force_treeevaluate_direct(int target, int mode);
int force_treeevaluate_ewald_correction(int target, int mode, double pos_x, double pos_y, double pos_z, double aold);
void force_treeevaluate_potential(int target, int type);
void force_treeevaluate_potential_shortrange(int target, int mode);
int force_treeevaluate_shortrange(int target, int mode);
void force_treefree(void);
void force_treeupdate_pseudos(void);
void force_update_hmax(void);
void force_update_len(void);
void force_update_node(int no, int flag);
void force_update_node_hmax_local(void);
void force_update_node_hmax_toptree(void);
void force_update_node_len_local(void);
void force_update_node_len_toptree(void);
void force_update_node_recursive(int no, int sib, int father);
void force_update_pseudoparticles(void);
void force_update_size_of_parent_node(int no);
void free_memory(void);
int get_bytes_per_blockelement(enum iofields blocknr);
void get_dataset_name(enum iofields blocknr, char *buf);
int get_datatype_in_block(enum iofields blocknr);
double get_drift_factor(int time0, int time1);
double get_gravkick_factor(int time0, int time1);
double get_hydrokick_factor(int time0, int time1);
int get_particles_in_block(enum iofields blocknr, int *typelist);
double get_random_number(int id);
#ifdef SFR
double get_StarFormation_random_number(int id);
#endif
#ifdef FEEDBACK_WIND
double get_FeedbackWind_random_number(int id);
#endif
#ifdef CHIMIE
double get_Chimie_random_number(int id);
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double get_ChimieKineticFeedback_random_number(int id);
#endif
int get_timestep(int p, double *a, int flag);
int get_values_per_blockelement(enum iofields blocknr);
int grav_tree_compare_key(const void *a, const void *b);
void gravity_forcetest(void);
void gravity_tree(void);
void gravity_tree_shortrange(void);
double gravkick_integ(double a, void *param);
int hydro_compare_key(const void *a, const void *b);
void hydro_evaluate(int target, int mode);
void hydro_force(void);
double hydrokick_integ(double a, void *param);
int imax(int, int);
int imin(int, int);
void init(void);
void init_drift_table(void);
void init_peano_map(void);
#ifdef COSMICTIME
void init_cosmictime_table(void);
double get_cosmictime_difference(int time0, int time1);
#endif
void long_range_force(void);
void long_range_init(void);
void long_range_init_regionsize(void);
void move_particles(int time0, int time1);
size_t my_fread(void *ptr, size_t size, size_t nmemb, FILE * stream);
size_t my_fwrite(void *ptr, size_t size, size_t nmemb, FILE * stream);
int ngb_clear_buf(FLOAT searchcenter[3], FLOAT hguess, int numngb);
void ngb_treeallocate(int npart);
void ngb_treebuild(void);
int ngb_treefind_pairs(FLOAT searchcenter[3], FLOAT hsml, int phase, int *startnode);
#ifdef MULTIPHASE
int ngb_treefind_phase_pairs(FLOAT searchcenter[3], FLOAT hsml, int phase, int *startnode);
int ngb_treefind_sticky_collisions(FLOAT searchcenter[3], FLOAT hguess, int phase, int *startnode);
#endif
int ngb_treefind_variable(FLOAT searchcenter[3], FLOAT hguess, int phase, int *startnode);
#ifdef CHIMIE
int ngb_treefind_variable_for_chimie(FLOAT searchcenter[3], FLOAT hguess, int *startnode);
#endif
void ngb_treefree(void);
void ngb_treesearch(int);
void ngb_treesearch_pairs(int);
void ngb_update_nodes(void);
void open_outputfiles(void);
peanokey peano_hilbert_key(int x, int y, int z, int bits);
void peano_hilbert_order(void);
void pm_init_nonperiodic(void);
void pm_init_nonperiodic_allocate(int dimprod);
void pm_init_nonperiodic_free(void);
void pm_init_periodic(void);
void pm_init_periodic_allocate(int dimprod);
void pm_init_periodic_free(void);
void pm_init_regionsize(void);
void pm_setup_nonperiodic_kernel(void);
int pmforce_nonperiodic(int grnr);
void pmforce_periodic(void);
int pmpotential_nonperiodic(int grnr);
void pmpotential_periodic(void);
double pow(double, double); /* on some old DEC Alphas, the correct prototype for pow() is missing, even when math.h is included */
void read_file(char *fname, int readTask, int lastTask);
void read_header_attributes_in_hdf5(char *fname);
void read_ic(char *fname);
int read_outputlist(char *fname);
void read_parameter_file(char *fname);
void readjust_timebase(double TimeMax_old, double TimeMax_new);
void reorder_gas(void);
void reorder_particles(void);
#ifdef STELLAR_PROP
void reorder_stars(void);
void reorder_st(void);
#endif
void restart(int mod);
void run(void);
void savepositions(int num);
double second(void);
void seed_glass(void);
void set_random_numbers(void);
void set_softenings(void);
void set_units(void);
void init_local_sys_state(void);
void setup_smoothinglengths(void);
#ifdef CHIMIE
void stars_setup_smoothinglengths(void);
#endif
void statistics(void);
void terminate_processes(void);
double timediff(double t0, double t1);
#ifdef HAVE_HDF5
void write_header_attributes_in_hdf5(hid_t handle);
#endif
void write_file(char *fname, int readTask, int lastTask);
void write_pid_file(void);
#ifdef COOLING
int init_cooling(FLOAT metallicity);
int init_cooling_with_metals();
double cooling_function(double temperature);
double cooling_function_with_metals(double temperature,double metal);
void init_from_new_redshift(double Redshift);
double J_0();
double J_nu(double e);
double sigma_rad_HI(double e);
double sigma_rad_HeI(double e);
double sigma_rad_HeII(double e);
double cooling_bremstrahlung_HI(double T);
double cooling_bremstrahlung_HeI(double T);
double cooling_bremstrahlung_HeII(double T);
double cooling_ionization_HI(double T);
double cooling_ionization_HeI(double T);
double cooling_ionization_HeII(double T);
double cooling_recombination_HI(double T);
double cooling_recombination_HeI(double T);
double cooling_recombination_HeII(double T);
double cooling_dielectric_recombination(double T);
double cooling_excitation_HI(double T);
double cooling_excitation_HII(double T);
double cooling_compton(double T);
double A_HII(double T);
double A_HeIId(double T);
double A_HeII(double T);
double A_HeIII(double T);
double G_HI(double T);
double G_HeI(double T);
double G_HeII(double T);
double G_gHI();
double G_gHeI();
double G_gHeII();
double G_gHI_t(double J0);
double G_gHeI_t(double J0);
double G_gHeII_t(double J0);
double G_gHI_w();
double G_gHeI_w();
double G_gHeII_w();
double heating_radiative_HI();
double heating_radiative_HeI();
double heating_radiative_HeII();
double heating_radiative_HI_t(double J0);
double heating_radiative_HeI_t(double J0);
double heating_radiative_HeII_t(double J0);
double heating_radiative_HI_w();
double heating_radiative_HeI_w();
double heating_radiative_HeII_w();
double heating_compton();
void print_cooling(double T,double c1,double c2,double c3,double c4,double c5,double c6,double c7,double c8,double c9,double c10,double c11,double c12,double c13,double h1, double h2, double h3, double h4);
void compute_densities(double T,double X,double* n_H, double* n_HI,double* n_HII,double* n_HEI,double* n_HEII,double* n_HEIII,double* n_E,double* mu);
void compute_cooling_from_T_and_Nh(double T,double X,double n_H,double *c1,double *c2,double *c3,double *c4,double *c5,double *c6,double *c7,double *c8,double *c9,double *c10,double *c11,double *c12,double *c13,double *h1, double *h2, double *h3, double *h4);
double compute_cooling_from_Egyspec_and_Density(double Egyspec,double Density, double *MeanWeight);
double DoCooling(FLOAT Density,FLOAT Entropy,int Phase,int i,FLOAT DtEntropyVisc, double dt, double hubble_a);
void CoolingForOne(int i,int t0,int t1,double a3inv,double hubble_a);
void cooling();
double lambda(FLOAT density,FLOAT egyspec, int phase, int i);
#endif
#ifdef HEATING
void heating();
double gamma_fct(FLOAT Density,FLOAT Entropy,int i);
#endif
#ifdef AGN_HEATING
void agn_heating();
double gamma_fct(FLOAT density,double r, double SpecPower);
double HeatingRadialDependency(double r);
#endif
#ifdef MULTIPHASE
void update_phase(void);
void init_sticky(void);
void sticky(void);
void sticky_compute_energy_kin(int mode);
void sticky_collisions(void);
void sticky_collisions2(int loop);
void sticky_evaluate(int target, int mode, int loop);
int sticky_compare_key(const void *a, const void *b);
#endif
#ifdef FEEDBACK_WIND
void feedbackwind_compute_energy_kin(int mode);
#endif
#ifdef CHIMIE
void init_chimie(void);
void check_chimie(void);
void chimie(void);
void do_chimie(void);
void chimie_evaluate(int target, int mode);
int chimie_compare_key(const void *a, const void *b);
int get_nelts();
char* get_Element(i);
float get_SolarAbundance(i);
#if defined(CHIMIE_THERMAL_FEEDBACK) && defined(CHIMIE_COMPUTE_THERMAL_FEEDBACK_ENERGY)
void chimie_compute_energy_int(int mode);
#endif
#if defined(CHIMIE_KINETIC_FEEDBACK) && defined(CHIMIE_COMPUTE_KINETIC_FEEDBACK_ENERGY)
void chimie_compute_energy_kin(int mode);
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
void chimie_apply_wind(void);
#endif
#endif
#ifdef OUTERPOTENTIAL
void init_outer_potential(void);
void outer_forces(void);
void outer_potential(void);
#ifdef NFW
void init_outer_potential_nfw(void);
void outer_forces_nfw(void);
void outer_potential_nfw(void);
#endif
#ifdef PLUMMER
void init_outer_potential_plummer(void);
void outer_forces_plummer(void);
void outer_potential_plummer(void);
#endif
#ifdef PISOTHERM
void init_outer_potential_pisotherm(void);
void outer_forces_pisotherm(void);
void outer_potential_pisotherm(void);
double potential_f(double r, void * params);
double get_potential(double r);
#endif
#ifdef CORIOLIS
void init_outer_potential_coriolis(void);
void set_outer_potential_coriolis(void);
void outer_forces_coriolis(void);
void outer_potential_coriolis(void);
#endif
#endif
#ifdef SFR
void star_formation(void);
void rearrange_particle_sequence(void);
void sfr_compute_energy_int(int mode);
void sfr_check_number_of_stars(int mode);
#endif
#ifdef AGN_ACCRETION
void compute_agn_accretion(void);
#endif
#ifdef BUBBLES
void init_bubble(void);
void make_bubble(void);
void create_bubble(int sign);
#endif
#ifdef BONDI_ACCRETION
void bondi_accretion(void);
#endif
#ifdef PNBODY
void init_pnbody();
void finalize_pnbody();
void compute_pnbody();
#endif
#ifdef AB_TURB
void init_turb();
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_ROSS) || defined(ART_VISCO_CD)
void move_art_visc(int i,double dt_drift);
#ifdef ART_VISCO_CD
void art_visc_allocate();
void art_visc_free();
void compute_art_visc(int i);
#endif
#endif

Event Timeline