Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F122631011
par-transformpointconnu-en.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Jul 21, 04:53
Size
2 KB
Mime Type
text/x-tex
Expires
Wed, Jul 23, 04:53 (2 d)
Engine
blob
Format
Raw Data
Handle
27529427
Attached To
R232 fabrepos2
par-transformpointconnu-en.tex
View Options
\section
{
\Index
{
Transformations
}
to a point
}
Given is an initial point
$
A
(
x,y,z
)
$
. Now we make some
rotations around the axes
$
Ox
$
,
$
Oy
$
and
$
Oz
$
with the appropriate angles (in degrees):
\verb
+[RotX=valueX,RotY=valueY,RotZ=valueZ]+, in this order,
then translate it with the vector
$
(
v_x,v_y,v_z
)
$
. The problem is to get back
the coordinates of the image (final point)
$
A'
(
x',y',z'
)
$
.
The code
\texttt
{
\textbackslash
psTransformPoint[RotX=valueX,RotY=valueY,
RotZ=valueZ](x y z)(vx,vy,vz)
\{
A'
\}
}
\\
now allows us to save the node
$
A'
$
, the coordinates of the transformed point.
In the following example,
$
A
(
2
,
2
,
2
)
$
is one of the vertices of the initial
cube, where the centre is placed at the origin.
\begin
{
verbatim
}
\psSolid
[object=cube,a=4,action=draw*,linecolor=red]
%
\end
{
verbatim
}
Some transformations are applied to the cube:
\begin
{
verbatim
}
\psSolid
[object=cube,a=4,action=draw*,RotX=-30,RotY=60,RotZ=-60]
(7.5,11.25,10)
%
\end
{
verbatim
}
To obtain the image of
$
A
$
, we use the following command:
\begin
{
verbatim
}
\psTransformPoint
[RotX=-30,RotY=60,RotZ=-60]
(2 2 2)(7.5,11.25,10)
{
A'
}
\end
{
verbatim
}
This allows us, for example, to name these points and then draw the vector
$
\overrightarrow
{AA'}
$
.
\begin
{
center
}
\begin
{
pspicture
}
(-2,-4)(6,6)
\psframe
(-3,-4)(9,6)
\psset
{
viewpoint=50 20 30 rtp2xyz,Decran=50,unit=0.5
}
\psSolid
[object=cube,a=4,action=draw*,linecolor=red]
%
\psPoint
(2,2,2)
{
A
}
\psdot
(A)
\psSolid
[object=cube,a=4,action=draw*,RotX=-30,RotY=60,RotZ=-60]
(7.5,11.25,10)
%
\psTransformPoint
[RotX=-30,RotY=60,RotZ=-60]
(2 2 2)(7.5,11.25,10)
{
A'
}
\psdot
(A')
\psline
[linecolor=blue,arrowsize=0.3]
{{
o-v
}}
(A)(A')
\uput
[u]
(A')
{
$
A'
$
}
\uput
[u]
(A)
{
$
A
$
}
\psset
{
solidmemory,action=none
}
\psSolid
[object=cube,a=4,name=A1,]
(0,0,0)
\psSolid
[object=plan,definition=solidface,args=A1 0,name=P0]
\psSolid
[object=plan,definition=solidface,args=A1 1,name=P1]
\psSolid
[object=plan,definition=solidface,args=A1 4,name=P4]
\psset
{
fontsize=100
}
\psProjection
[object=texte,linecolor=red,text=A,plan=P0]
\psProjection
[object=texte,linecolor=red,text=B,plan=P1]
\psProjection
[object=texte,linecolor=red,text=E,plan=P4]
\psSolid
[object=cube,a=4,RotX=-30,RotY=60,RotZ=-60,name=A2,]
(7.5,11.25,10)
\psSolid
[object=plan,definition=solidface,args=A2 0,name=P'0]
\psSolid
[object=plan,definition=solidface,args=A2 1,name=P'1]
\psSolid
[object=plan,definition=solidface,args=A2 2,name=P'2]
\psProjection
[object=texte,text=A,plan=P'0]
\psProjection
[object=texte,text=B,plan=P'1]
\psProjection
[object=texte,text=C,plan=P'2]
\axesIIID
(2,2,2)(10,10,8)
\end
{
pspicture
}
\end
{
center
}
\endinput
Event Timeline
Log In to Comment