Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F110119970
par-projectioncourbe-en.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Apr 24, 19:36
Size
3 KB
Mime Type
text/x-tex
Expires
Sat, Apr 26, 19:36 (2 d)
Engine
blob
Format
Raw Data
Handle
25783240
Attached To
R232 fabrepos2
par-projectioncourbe-en.tex
View Options
\section{Curves of real-valued and \Index{parameterised functions}}
\subsection{Curve of a real-valued function}
The object \Lkeyword{courbe} allows us to draw a curve, where the
name is given with the option \Lkeyword{function}. This \Index{function},
with values in $\mathbb{R}$, has to be defined by the macro
\verb+\defFunction+ (see the appropriate paragraph for more
details).
We can define this function either in algebraic notation, with the
option \Lkeyword{algebraic}, or in Reverse Polish Notation (RPN),
with variables like $(x,u,t\ldots)$, using an expression of the
following form:
\begin{verbatim}
\defFunction[algebraic]{nom_fonction}(x){x*sin(x)}{}{}
\end{verbatim}
\begin{verbatim}
\defFunction{nom_fonction}(x){x dup sin mul}{}{}
\end{verbatim}
\encadre{This expression needs to be included within a
\texttt{pspicture} environment.}
The limits of the variables are defined by the option
\texttt{\Lkeyword{range}=$xmin$ $xmax$}, and the option \texttt{argument=$n$}
defines the number of points to be plotted when drawing the \Index{curve}.
\begin{LTXexample}[width=7.5cm]
\begin{pspicture}(-3,-3)(4,3.5)%
\psframe*[linecolor=blue!50](-3,-3)(4,3.5)
\psset{lightsrc=50 20 20,viewpoint=50 30 15,Decran=60}
\psset{solidmemory}
\defFunction[algebraic]{1_sin}(x){2*sin(1/x)}{}{}
\psSolid[object=grille,
base=-3 0 -3 3,
linewidth=0.5\pslinewidth,linecolor=gray,]
%% definition du plan de projection
\psSolid[object=plan,
definition=equation,
args={[1 0 0 0] 90},
base=-3.2 3.2 -2.2 2.2,
planmarks,
showBase,
name=monplan]
\psset{plan=monplan}
\psSolid[object=plan,
args=monplan,
linecolor=gray!40,
plangrid,
action=none]
\psProjection[object=courbe,
linecolor=red,
range=-3 3,resolution=720,
function=1_sin]
\composeSolid
\axesIIID(4,2,2)(5,4,3)
\end{pspicture}
\end{LTXexample}
\subsection{\Index{Parameterised curves}}
The technique used here is analogous to the above, with the
difference that the values now come from $\mathbb{R}^2$, and the
object for the macro \Lcs{psProjection} is now \Lkeyword{courbeR2}.
For example, to draw a circle of radius $3$ and centre $O$, we
type:
\begin{verbatim}
\defFunction[algebraic]{cercle}(t){3*cos(t)}{3*sin(t)}{}
\end{verbatim}
Another example: \Index{Lissajous} curves.
\begin{LTXexample}[width=7.5cm]
\begin{pspicture}(-3,-3)(4,3.5)%
\psframe*[linecolor=blue!50](-3,-3)(4,3.5)
\psset{lightsrc=50 20 20,viewpoint=50 30 15,Decran=60}
\psset{solidmemory}
\defFunction[algebraic]{F}(t){2*sin(0.57735*t)}{2*sin(0.707*t)}{}
\psSolid[object=grille,
base=-3 0 -3 3,
linewidth=0.5\pslinewidth,linecolor=gray,]
%% definition du plan de projection
\psSolid[object=plan,
definition=equation,
args={[1 0 0 0] 90},
base=-3.2 3.2 -2.2 2.2,
name=monplan,
planmarks,
showBase]
\psset{plan=monplan}
\psSolid[object=plan,
args=monplan,
linecolor=gray!40,
plangrid,
action=none]
\psProjection[object=courbeR2,
range=-25.12 25.12,resolution=720,
normal=1 1 2,linecolor=red,
function=F]
\composeSolid
\axesIIID(4,2,2)(5,4,3)
\end{pspicture}
\end{LTXexample}
\endinput
Event Timeline
Log In to Comment