Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F110564838
par-projectiondroite-en.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Apr 26, 22:34
Size
2 KB
Mime Type
text/x-tex
Expires
Mon, Apr 28, 22:34 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
25817575
Attached To
R232 fabrepos2
par-projectiondroite-en.tex
View Options
\section{Lines}
\subsection{Direct definition}
The object \texttt{droite} allows us to define and draw a \Index{line}. In
the \texttt{pst-solides3d} package, a line in 2D is defined by its
two end-points.
We use the option \Lkeyword{args} to specify the end-points of the
chosen line. We can use coordinates or named points.
As with points and vectors, we can save the coordinates of the
line with the option \Lkeyword{name}.
\begin{LTXexample}[width=7.5cm]
\begin{pspicture}(-3,-3)(4,3.5)%
\psframe*[linecolor=blue!50](-3,-3)(4,3.5)
\psset{viewpoint=50 30 15,Decran=60}
\psset{solidmemory}
%% definition du plan de projection
\psSolid[object=plan,
definition=equation,
args={[1 0 0 0] 90},
planmarks,name=monplan]
\psset{plan=monplan}
%% definition du point A
\psProjection[object=point,
name=A,text=A,
pos=ur](-2,1.25)
\psProjection[object=point,
name=B,text=B,
pos=ur](1,.75)
\psProjection[object=droite,
linecolor=blue,
args=0 0 1 .5]
\psProjection[object=droite,
linecolor=orange,
args=A B]
\composeSolid
\end{pspicture}
\end{LTXexample}
\subsection{Some other definitions}
There are other methods to define a line in 2D. The options
\Lkeyword{definition} and \Lkeyword{args} are used in these variants:
\begin{itemize}
\item \texttt{\Lkeyword{definition}=\Lkeyval{horizontale}};
\texttt{\Lkeyword{args}=$b$}.
The line with equation $y=b$.
\item \texttt{\Lkeyword{definition}=\Lkeyval{verticale}};
\texttt{\Lkeyword{args}=$a$}.
The line with equation $x=a$.
\item \texttt{\Lkeyword{definition}=\Lkeyval{paral}};
\texttt{\Lkeyword{args}=$d$ $A$}.
A line parallel to $d$ passing through
$A$.
\item \texttt{\Lkeyword{definition}=\Lkeyword{perp}};
\texttt{\Lkeyword{args}=$d$ $A$}.
A line perpendicular to $d$ passing
through $A$.
\item \texttt{\Lkeyword{definition}=\Lkeyval{mediatrice}};
\texttt{\Lkeyword{args}=$A$ $B$}.
The perpendicular bisector of the line
segment $[AB]$.
\item \texttt{\Lkeyword{definition}=\Lkeyword{bissectrice}};
\texttt{\Lkeyword{args}=$A$ $B$ $C$}.
The bisector of the angle $\widehat
{ABC}$.
\item \texttt{\Lkeyword{definition}=\Lkeyword{axesymdroite}};
\texttt{\Lkeyword{args}=$d$ $D$}.
The reflection of the line $d$ in the
line $D$.
\item \texttt{\Lkeyword{definition}=\Lkeyword{rotatedroite}};
\texttt{\Lkeyword{args}=$d$ $I$ $r$}.
The image of the line $d$ after a
rotation with centre $I$ through an angle $r$ (in degrees)
\item \texttt{\Lkeyword{definition}=\Lkeyword{translatedroite}};
\texttt{\Lkeyword{args}=$d$ $u$}.
The image of the line $d$ shifted by the vector $\vec u$.
\end{itemize}
\endinput
Event Timeline
Log In to Comment