Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F110848327
par-projectionpolygone-en.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Apr 28, 10:25
Size
2 KB
Mime Type
text/x-tex
Expires
Wed, Apr 30, 10:25 (2 d)
Engine
blob
Format
Raw Data
Handle
25844316
Attached To
R232 fabrepos2
par-projectionpolygone-en.tex
View Options
\section{Polygons}
\subsection{Direct definition}
The object \Lkeyword{polygone} allows us to define a \Index{polygon}. We use
the option \Lkeyword{args} to specify the list of vertices:
\texttt{[object=polygone,args=$A_0$ $A_1$ \ldots $A_n$]}
There are other ways to define a polygon in 2D. The options
\Lkeyword{definition} and \Lkeyword{args} support these methods:
\begin{itemize}
%% syntaxe : pol u --> pol'
\item \texttt{\Lkeyword{definition}=\Lkeyword{translatepol}};
\texttt{\Lkeyword{args}=$pol$ $u$}.
Translation of the polygon $pol$ by the
vector $\vec u$
%% syntaxe : pol u --> pol'
\item \texttt{\Lkeyword{definition}=\Lkeyword{rotatepol}};
\texttt{\Lkeyword{args}=$pol$ $I$ $\alpha $}.
Image of the polygon $pol$
after a rotation with centre $I$ and angle $\alpha $
%% syntaxe : pol I alpha --> pol'
\item \texttt{\Lkeyword{definition}=\Lkeyword{hompol}};
\texttt{\Lkeyword{args}=$pol$ $I$ $\alpha $}.
Image of the polygon $pol$
after a homothety (dilation) with centre $I$ and ratio $\alpha$.
%% syntaxe : pol I --> pol'
\item \texttt{\Lkeyword{definition}=\Lkeyword{sympol}};
\texttt{\Lkeyword{args}=$pol$ $I$}.
Image of the polygon $pol$ after a
reflection in the point $I$.
%% syntaxe : pol D --> pol'
\item \texttt{\Lkeyword{definition}=\Lkeyword{axesympol}};
\texttt{\Lkeyword{args}=$pol$ $d$}.
Image of the polygon $pol$ after a
reflection in the line $d$.
\end{itemize}
In the following example we define, name and draw the polygon with
vertices $(-1,0)$, $(-3, 1)$, $(0, 2)$, then---in blue---the
image after a rotation about the point $(-1,0)$ through an angle
$-45$. Finally, we translate the polygon with the vector shift
$(2,-2)$ by directly incorporating \textit{jps code} within the
argument of \Lkeyword{definition}.
\begin{LTXexample}[width=7.5cm]
\begin{pspicture}(-3,-3)(4,3.5)%
\psframe*[linecolor=blue!50](-3,-3)(4,3.5)
\psset{lightsrc=50 20 20,viewpoint=50 30 15,Decran=60}
\psset{solidmemory}
\psSolid[object=grille,
base=-3 0 -3 3,
linewidth=0.5\pslinewidth,linecolor=gray,]
%% definition du plan de projection
\psSolid[object=plan,
definition=equation,
args={[1 0 0 0] 90},
base=-3.2 3.2 -2.2 2.2,
name=monplan,
planmarks,
]
\psset{plan=monplan}
\psSolid[object=plan,
args=monplan,
linecolor=gray!40,
plangrid,
action=none,
]
\psProjection[object=polygone,
args=-1 0 -3 1 0 2,
name=P,
]
\psProjection[object=polygone,
definition=rotatepol,
linecolor=blue,
args=P -1 0 -45,
]
%% du code jps dans la definition
\psProjection[object=polygone,
definition={2 -2 addv} papply,
fillstyle=hlines,hatchcolor=yellow,
linestyle=dashed,
args=P,
]
\composeSolid
\axesIIID(4,2,2)(5,4,3)
\end{pspicture}
\end{LTXexample}
\endinput
Event Timeline
Log In to Comment