Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F110967753
4_DFT.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Apr 28, 23:58
Size
7 KB
Mime Type
text/x-tex
Expires
Wed, Apr 30, 23:58 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
25852127
Attached To
R2653 epfl
4_DFT.tex
View Options
\documentclass[aspectratio=169]{beamer}
\def\stylepath{../styles}
\usepackage{\stylepath/com202}
\begin{document}
\begin{frame} \frametitle{The Fourier Basis for $\mathbb{C}^N$}
\centering
The set of $N$ orthogonal vectors
\[
\{\mathbf{w}_k\}_{k = 0, 1, \ldots, N-1}
\]
where
\[
\mathbf{w}_k = \begin{bmatrix}
e^{j\frac{2\pi}{N}k\cdot 0} & e^{j\frac{2\pi}{N}k} & e^{j\frac{2\pi}{N}2k} & e^{j\frac{2\pi}{N}3k} & \ldots & e^{j\frac{2\pi}{N}(N-1)k}
\end{bmatrix}^T
\]
is a basis for $\mathbb{C}^N$.
\end{frame}
\begin{frame} \frametitle{The Fourier Basis for $\mathbb{C}^N$}
\begin{itemize}
\item $N$ orthogonal vectors $\longrightarrow$ basis for $\mathbb{C}^{N}$
\item vectors are not ortho{\em normal}; normalization factor would be $1/\sqrt{N}$
\item for \textit{practical} (i.e. algorithmic) reasons, we will keep the normalization factor explicit in the change of basis formulas
\end{itemize}
\end{frame}
\begin{frame} \frametitle{From the time domain to the frequency domain}
\begin{itemize}
\item input data in terms of the orthonormal canonical basis:
\[
\mathbf{x} = \sum_{n=0}^{N-1} x_n \mathbf{e}_n
\]
\item same data in terms of the orthogonal Fourier basis
\[
\mathbf{X} = \sum_{k=0}^{N-1} X_k \mathbf{w}_k
\]
\item because of orthognonality, the $N$ new coordinates can be easily computed as
\[
X_k = \langle \mathbf{w}_k, \mathbf{x} \rangle
\]
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Basis expansion using the Fourier basis}
\centering
Analysis formula:
\[
X_k = \langle \mathbf{w}_k, \mathbf{x} \rangle
\]
\vspace{2em}
Synthesis formula:
\[
\mathbf{x} = \frac{1}{N} \sum_{k = 0}^{N-1} X_k \mathbf{w}_k
\]
\end{frame}
\begin{frame}
\frametitle{Basis expansion in algorithmic form (using data arrays)}
\centering
Analysis formula:
\[
X[k] = \sum_{n = 0}^{N-1} x[n]\, e^{-j\frac{2\pi}{N}nk}, \qquad k = 0,1,\ldots,N-1
\]
$N$-point signal in the {\em frequency domain}
\vspace{2em}
\pause
Synthesis formula:
\[
x[n] = \frac{1}{N} \sum_{k = 0}^{N-1} X[k]\, e^{j\frac{2\pi}{N}nk}, \qquad n = 0,1,\ldots,N-1
\]
$N$-point signal in the {\em ``time'' domain}
\end{frame}
\begin{frame} \frametitle{Change of basis in matrix form}
\begin{itemize}
\item Fourier basis is orthognonal so we can build a change-of-basis matrix
\item the $N$ new coordinates are
\[
\mathbf{X} = \mathbf{W}\mathbf{x}
\]
where
\[
\mathbf{W}[k,n] = \langle \mathbf{w}_k, \mathbf{e}_n \rangle = e^{-j\frac{2\pi}{N}nk}
\]
\end{itemize}
\end{frame}
\begin{frame} \frametitle{The Fourier matrix}
\centering
The Fourier matrix is obtained by stacking the conjugate-transposes of the basis vectors:
\[
\mathbf{W} = \begin{bmatrix}
\mathbf{w}_0^H \\
\mathbf{w}_1^H \\
\mathbf{w}_2^H \\
\vdots \\
\mathbf{w}_{N-1}^H
\end{bmatrix}
\]
\vspace{2em}
The Fourier matrix is unitary up to a constant:
\[
\mathbf{W}^H\mathbf{W} = \mathbf{W}\mathbf{W}^H = N\mathbf{I}
\]
\end{frame}
\begin{frame} \frametitle{Change of basis in matrix form}
\centering
Analysis formula:
\[
\mathbf{X} = \mathbf{W} \mathbf{x}
\]
\vspace{2em}
Synthesis formula:
\[
\mathbf{x} = \frac{1}{N} \mathbf{W}^H \mathbf{X}
\]
\end{frame}
\begin{frame} \frametitle{For those keeping track of details...}
Our definition for the inner product in $\mathbb{C}^N$ conjugates the first term:
\[
\langle \mathbf{x}, \mathbf{y} \rangle = \sum_n x_n^* y_n
\]
\vspace{2em}
This preserves the structure of the Fourier formulas:
\begin{align*}
X_k &= \langle \mathbf{w}_k, \mathbf{x} \rangle & \mbox{single coefficient} \\
\mathbf{X} &= \mathbf{W} \mathbf{x} & \mbox{full set of coefficients}
\end{align*}
\end{frame}
\begin{frame} \frametitle{Structure of the Fourier matrix}
\centering
Define $W_N = e^{-j\frac{2\pi}{N}}$
(or simply $W$ when $N$ is evident from the context)
\vspace{2em}
\[
\mathbf{W} = \begin{bmatrix}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & W^{1} & W^{2} & W^{3} & \ldots & W^{N-1} \\
1 & W^{2} & W^{4} & W^{6} & \ldots & W^{2(N-1)} \\
& & & \ldots \\
1 & W^{N-1} & W^{2(N-1)} & W^{3(N-1)} & \ldots & W^{(N-1)^2}
\end{bmatrix}
\]
\end{frame}
\begin{frame} \frametitle{DFT Matrix}
\centering
Because of the aliasing property of the complex exponential
\[
W_N^m = W_N^{(m \mod N)}
\]
\pause
\vspace{2em}
Example:
\begin{align*}
W_8^{11} &= e^{-j\frac{2\pi}{8}11} \\
&= e^{-j\frac{2\pi}{8}8} e^{-j\frac{2\pi}{8}3} \\
&= W_8^{3}
\end{align*}
\end{frame}
\begin{frame} \frametitle{Small DFT matrices: $N = 2, 3$}
\[
W_2 = e^{-j\frac{2\pi}{2}} = -1
\]
\[
\mathbf{W}_2 =
\begin{bmatrix}
1 & 1 \\
1 & W
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix}
\]
\vspace{2em}
\[
W_3 = e^{-j\frac{2\pi}{3}} = -(1 + j\sqrt{3})/2
\]
\[
\mathbf{W}_3 =
\begin{bmatrix}
1 & 1 & 1 \\
1 & W & W^2 \\
1 & W^2 & W^4
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 \\
1 & W & W^2 \\
1 & W^2 & W
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 \\
1 & -(1 + j\sqrt{3})/2 & -(1 - j\sqrt{3})/2 \\
1 & -(1 - j\sqrt{3})/2 & -(1 + j\sqrt{3})/2
\end{bmatrix}
\]
\end{frame}
\begin{frame} \frametitle{Small DFT matrices: $N = 4$}
\[
W_4 = e^{-j\frac{2\pi}{4}} = e^{-j\frac{\pi}{2}} = -j
\]
\[
\mathbf{W}_4 =
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & W & W^2& W^3 \\
1 & W^2 & W^4 & W^6 \\
1 & W^3 & W^6 & W^9
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & W & W^2& W^3 \\
1 & W^2 & 1 & W^2\\
1 & W^3 & W^2 & W
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{bmatrix}
\]
\end{frame}
\begin{frame} \frametitle{Small DFT matrices: $N = 5$}
\[
\mathbf{W}_5 =
\begin{bmatrix}
1 & 1 & 1 & 1 & 1\\
1 & W & W^2& W^3 & W^4 \\
1 & W^2 & W^4 & W^6 & W^8\\
1 & W^3 & W^6 & W^9 & W^{12}\\
1 & W^4 & W^8 & W^{12} & W^{16}\\
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 & 1 & 1\\
1 & W & W^2& W^3 & W^4 \\
1 & W^2 & W^4 & W & W^3\\
1 & W^3 & W & W^4 & W^{2}\\
1 & W^4 & W^3 & W^2 & W\\
\end{bmatrix}
\]
\end{frame}
\begin{frame} \frametitle{Small DFT matrices: $N = 6$}
\[
\mathbf{W}_6 =
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1\\
1 & W & W^2& W^3 & W^4 & W^5\\
1 & W^2 & W^4 & W^6 & W^8 & W^{10}\\
1 & W^3 & W^6 & W^9 & W^{12} & W^{15}\\
1 & W^4 & W^8 & W^{12} & W^{16} & W^{20}\\
1 & W^5 & W^{10} & W^{15} & W^{20} & W^{25}
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1\\
1 & W & W^2& W^3 & W^4 & W^5\\
1 & W^2 & W^4 & 1 & W^2 & W^{4}\\
1 & W^3 & 1 & W^3 & 1 & W^{3}\\
1 & W^4 & W^2 & 1 & W^{4} & W^{2}\\
1 & W^5 & W^{4} & W^{3} & W^{2} & W
\end{bmatrix}
\]
\end{frame}
\end{document}
Event Timeline
Log In to Comment