Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F105178316
hw02.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Mar 15, 05:24
Size
2 KB
Mime Type
text/x-tex
Expires
Mon, Mar 17, 05:24 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
24935970
Attached To
R2653 epfl
hw02.tex
View Options
\documentclass[a4paper,13pt]{article}
\usepackage{defsDSPcourse}
\title{COM-303 - Signal Processing for Communications}
\author{Homework \#2}
\date{Assigned on Feb 29, 2016.}
\begin{document}
\maketitle
\begin{exercise}{Bases}
Let $\{\mathbf{x}^{(k)}\}_{k=0,\ldots,N-1}$ be a basis for a
subspace $S$. Prove that any vector $\mathbf{z}\in S$ is
\emph{uniquely} represented
in this basis.\\\\
\emph{Hint:} prove by contradiction.
\end{exercise}
\begin{exercise}{Fourier Basis}
Consider the {\it Fourier basis} $\{ \wb^{(k)}\}_{k=0,
\ldots,N-1}$, defined as:
\[
\wb_n^{(k)}=e^{-j\frac{2\pi}{N}nk}.
\]
\begin{enumerate}
\item Prove that it is an {\it orthogonal basis} in $\setC^N$.
\item Normalize the vectors in order to get an {\it orthonormal
basis}.
\end{enumerate}
\end{exercise}
\begin{exercise}{DFT in matrix form}
\begin{enumerate}
\item
Express the DFT and inverse DFT (IDFT) formulas (analysis and synthesis) as
a matrix - vector multiplication.
\item
Is the DFT matrix hermitian?
\end{enumerate}
\end{exercise}
\begin{exercise}{DFT of elementary functions}
Derive the formula for the DFT of the length-$N$ signal
\[
x[n] = \cos((2\pi/N)Ln + \phi).
\]
\end{exercise}
\begin{exercise}{DFT Example}
Consider a length-64 signal $x[n]$ which is the sum of the three
sinusoidal signals plotted in Figure~\ref{dftFig}. Compute the DFT
coefficients $X[k], k = 0, 1, \ldots, 63$.
\begin{figure}[h!]
\centering \psfig{figure=DFTsigs.eps, width=10cm,height=4cm}
\caption{Three sinusoidal signals.}\label{dftFig}
\end{figure}
\end{exercise}
\begin{exercise}{Structure of DFT formulas}
The DFT and IDFT formulas are similar, but not
identical. Consider a length-$N$ signal $x[n], N = 0, \ldots,
N-1$; what is the length-$N$ signal $y[n]$ obtained as
\[
y[n] = \mbox{DFT}\{\mbox{DFT}\{x[n]\}\}
\]
(i.e. by applying the DFT algorithm twice in a row)?
\end{exercise}
\begin{exercise}{Plancherel-Parseval Equality}
Let $x[n]$ and $y[n]$ be two complex valued sequences and
$X[k]$ and $Y[k]$ their corresponding DFTs.
\begin{enumerate}
\item Show that
\[
\sum_{n=0}^{N-1} x[n]y^*[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]Y^*[k],
\]
where $*$ denotes the Hermitian transpose.
\item What is the physical meaning of the above formula when
$x[n]=y[n]$ ?
\end{enumerate}
\end{exercise}
%\begin{exercise}{DFT \& Matlab}
%\begin{enumerate}
%\item
%Consider the signal $x(n)=\cos{(2\pi f_0 n)}$. Draw the DFT of the signal in $N=128$ points without running Matlab, for $f_0=21/128$.
%
%\item In Matlab, use the \textit{fft} function to compute and draw the DFT for $f_0=21/128$ and $f_0=21/127$.
%Explain the differences that we can see in these two signal spectra.
%
%\item
%Repeat the drawing in Matlab, this time using the \textit{dftmtx} function and check that
%the results are the same. What is the preferred option between the two?
%\end{enumerate}
%\end{exercise}
\end{document}
Event Timeline
Log In to Comment