Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F105206085
3_normspace.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Mar 15, 10:49
Size
10 KB
Mime Type
text/x-tex
Expires
Mon, Mar 17, 10:49 (2 d)
Engine
blob
Format
Raw Data
Handle
24940610
Attached To
R2653 epfl
3_normspace.tex
View Options
This document is not UTF8. It was detected as ISO-8859-1 (Latin 1) and converted to UTF8 for display.
\documentclass
[aspectratio=169]
{
beamer
}
%\documentclass[aspectratio=169,handout]{beamer}
\def\stylepath
{
../styles
}
\usepackage
{
\stylepath
/com303
}
\usepackage
{
pst-3dplot
}
%\setbeameroption{show only notes}\def\logoEPFL{}
\setbeameroption
{
show notes
}
\begin
{
document
}
\begin
{
frame
}
\frametitle
{
Inner product
}
\begin
{
center
}
$
\langle
\cdot
,
\cdot
\rangle
\,
:
\,
V
\times
V
\rightarrow
\mathbb
{C}
$
\end
{
center
}
\begin
{
itemize
}
\item
measure of similarity between vectors
\item
inner product is zero? vectors are
\textit
{
orthogonal
}
(maximally different)
\end
{
itemize
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Formal properties of the inner product
}
For
$
\mathbf
{x},
\mathbf
{y},
\mathbf
{z}
\in
V
$
and
$
\alpha
\in
\mathbb
{C}
$
:
\begin
{
itemize
}
[<+->]
\item
$
\langle
\mathbf
{x}
+
\mathbf
{y},
\mathbf
{z}
\rangle
=
\langle
\mathbf
{x},
\mathbf
{z}
\rangle
+
\langle
\mathbf
{y},
\mathbf
{z}
\rangle
$
\item
$
\langle
\mathbf
{x} ,
\mathbf
{y}
\rangle
=
\langle
\mathbf
{y} ,
\mathbf
{x}
\rangle
^
*
$
\item
$
\langle
\alpha\mathbf
{x} ,
\mathbf
{y}
\rangle
=
\alpha
^
*
\langle
\mathbf
{x} ,
\mathbf
{y}
\rangle
$
\\
$
\langle\mathbf
{x} ,
\alpha\mathbf
{y}
\rangle
=
\alpha
\langle
\mathbf
{x} ,
\mathbf
{y}
\rangle
$
\item
$
\langle
\mathbf
{x} ,
\mathbf
{x}
\rangle
\geq
0
$
\item
$
\langle
\mathbf
{x} ,
\mathbf
{x}
\rangle
=
0
\Leftrightarrow
\mathbf
{x}
=
\mathbf
{
0
}
$
\item
if
$
\langle
\mathbf
{x} ,
\mathbf
{y}
\rangle
=
0
$
and
$
\mathbf
{x},
\mathbf
{y}
\neq
\mathbf
{
0
}
$
then
$
\mathbf
{x}
$
and
$
\mathbf
{y}
$
are called orthogonal
\end
{
itemize
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Inner product in
$
\mathbb
{R}^
2
$
}
\begin
{
center
}
$
\langle
\mathbf
{x},
\mathbf
{y}
\rangle
=
x_
0
y_
0
+
x_
1
y_
1
$
\vspace
{
2em
}
\psset
{
unit=8mm
}
\begin
{
pspicture
}
(-1,-1)(9,5)
\psgrid
[subgriddiv=1,gridlabels=0pt,gridcolor=gray,griddots=10]
(0,0)(-1,-1)(9,5)
\psaxes
[labelFontSize=\scriptstyle]
{
->
}
(0,0)(-1,-1)(9,5)
\psline
{
->
}
(6,2)
\uput
[-45]
(6,2)
{
$
\mathbf
{x}
$
}
\psline
{
->
}
(3,4)
\uput
[-45]
(3,4)
{
$
\mathbf
{y}
$
}
\end
{
pspicture
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Inner product in
$
\mathbb
{R}^
2
$
: the norm
}
\begin
{
center
}
$
\langle
\mathbf
{x},
\mathbf
{x}
\rangle
=
x_
0
^
2
+
x_
1
^
2
\only
<
2
>{
=
\|\mathbf
{x}
\|
^
2
}
$
\vspace
{
2em
}
\psset
{
unit=8mm
}
\begin
{
pspicture
}
(-1,-1)(9,5)
\psgrid
[subgriddiv=1,gridlabels=0pt,gridcolor=gray,griddots=10]
(0,0)(-1,-1)(9,5)
\psaxes
[labelFontSize=\scriptstyle]
{
->
}
(0,0)(-1,-1)(9,5)
\only
<1->
{
\psline
{
->
}
(6,2)
\uput
[-45]
(6,2)
{
$
\mathbf
{x}
$
}}
\only
<2->
{
\uput
{
3.2
}
[33]
{
0
}
(0,0)
{
$
\|\mathbf
{x}
\|
$
}}
\end
{
pspicture
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Inner product in
$
\mathbb
{R}^
2
$
}
\begin
{
center
}
$
\langle
\mathbf
{x},
\mathbf
{y}
\rangle
=
x_
0
y_
0
+
x_
1
y_
1
\only
<
2
>{
=
\|\mathbf
{x}
\|\,\|\mathbf
{y}
\|\,\cos\alpha
}
$
\vspace
{
2em
}
\psset
{
unit=8mm
}
\begin
{
pspicture
}
(-1,-1)(9,5)
\psgrid
[subgriddiv=1,gridlabels=0pt,gridcolor=gray,griddots=10]
(0,0)(-1,-1)(9,5)
\psaxes
[labelFontSize=\scriptstyle]
{
->
}
(0,0)(-1,-1)(9,5)
\only
<1->
{
\psline
{
->
}
(6,2)
\uput
[-45]
(6,2)
{
$
\mathbf
{x}
$
}
\psline
{
->
}
(3,4)
\uput
[-45]
(3,4)
{
$
\mathbf
{y}
$
}}
\only
<2->
{
\psarc
[linecolor=darkred]
{
->
}{
3
}{
18.435
}{
53.13
}
\uput
{
3.2
}
[33]
{
0
}
(0,0)
{
$
\alpha
$
}}
\end
{
pspicture
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Inner product in
$
\mathbb
{R}^
2
$
: orthogonality
}
\begin
{
center
}
$
\langle
\mathbf
{x},
\mathbf
{y}
\rangle
=
x_
0
y_
0
+
x_
1
y_
1
=
\|\mathbf
{x}
\|\,\|\mathbf
{y}
\|\,\cos\alpha
$
\vspace
{
2em
}
\psset
{
unit=8mm
}
\begin
{
pspicture
}
(-1,0)(8,6)
\SpecialCoor
%
\def\a
{
10
}
\def\r
{
6
}
\def\b
{
100
}
\def\s
{
5
}
\psline
{
->
}
(!
\a
cos
\r
mul
\a
sin
\r
mul)
\uput
{
\r
}
[
\a
](0,0)
{
~
$
\mathbf
{x}
$
}
\psline
{
->
}
(!
\b
cos
\s
mul
\b
sin
\s
mul)
\uput
{
\s
}
[
\b
](0,0)
{
~
$
\mathbf
{y}
$
}
\psarc
[linecolor=darkred]
{
->
}{
3
}{
\a
}{
\b
}
\uput
{
3.1
}
[55]
{
0
}
(0,0)
{
$
\alpha
=
\pi
/
2
$
}
\uput
{
5
}
[30]
{
0
}
(0,0)
{
$
\langle
\mathbf
{x},
\mathbf
{y}
\rangle
=
0
$
}
\NormalCoor
%
\end
{
pspicture
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Inner product in
$
L_
2
[-
1
,
1
]
$
}
\[
\langle
\mathbf
{x},
\mathbf
{y}
\rangle
=
\int
_{
-
1
}^{
1
} x
(
t
)
y
(
t
)
\,
dt
\]
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Inner product in
$
L_
2
[-
1
,
1
]
$
: the norm
}
\begin
{
center
}
$
\langle
\mathbf
{x},
\mathbf
{x}
\rangle
=
\|\mathbf
{x}
\|
^
2
=
\int
_{
-
1
}^{
1
}
\sin
^
2
(
\pi
t
)
dt
=
1
$
\vspace
{
1em
}
\begin
{
figure
}
\begin
{
dspPlot
}
[xticks=1,xout=true,yticks=2,sidegap=0]
{
-1, 1
}{
-1.25, 1.25
}
\moocStyle
\only
<1>
{
\dspFunc
{
x 180 mul sin
}}
\only
<2->
{
\dspFunc
[linecolor=lightgray]
{
x 180 mul sin
}
\pscustom
[fillstyle=solid,fillcolor=blue!30,linestyle=none]
{
%
\dspFunc
[linecolor=blue]
{
x 180 mul sin dup mul
}}}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Inner product in
$
L_
2
[-
1
,
1
]
$
: the norm
}
\begin
{
center
}
$
\|\mathbf
{y}
\|
^
2
=
\int
_{
-
1
}^{
1
} t^
2
\,
dt
=
2
/
3
$
\vspace
{
1em
}
\begin
{
figure
}
\begin
{
dspPlot
}
[xticks=1,xout=true,yticks=1,sidegap=0]
{
-1, 1
}{
-1.25, 1.25
}
\moocStyle
\dspFunc
{
x
}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Inner product in
$
L_
2
[-
1
,
1
]
$
}
\begin
{
center
}
$
\langle
\mathbf
{x},
\mathbf
{y}
\rangle
=
\int
_{
-
1
}^{
1
}
\only
<
1
-
2
>{x
(
t
)
y
(
t
)
}
\only
<
3
-
>{
\sqrt
{
3
/
2
}t
\sin
(
\pi
t
)
} dt
\only
<
3
>{
=
(
2
/
\pi
)
\sqrt
{
3
/
2
}
\approx
0
.
78
}
$
\vspace
{
1em
}
\begin
{
figure
}
\begin
{
dspPlot
}
[xticks=1,xout=true,yticks=1,sidegap=0]
{
-1, 1
}{
-1.25, 1.25
}
\moocStyle
\only
<1-2>
{
\dspFunc
{
x 180 mul sin
}}
\only
<2>
{
\dspFunc
[linecolor=orange]
{
x 1.225 mul
}}
\only
<3>
{
\dspFunc
[linecolor=lightgray]
{
x 180 mul sin
}
\dspFunc
[linecolor=lightgray]
{
x 1.225 mul
}
\pscustom
[fillstyle=solid,fillcolor=blue!30,linestyle=none]
{
%
\dspFunc
[linecolor=blue]
{
x 180 mul sin x 1.225 mul mul
}}}
\only
<1->
{
\dspText
(0,-.8)
{
$
\mathbf
{x}
=
\sin
(
\pi
t
)
$
}}
\only
<2->
{
\dspText
(-.6,-.3)
{
$
\mathbf
{y}
=
\sqrt
{
3
/
2
} t
$
}}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Inner product in
$
L_
2
[-
1
,
1
]
$
}
\begin
{
center
}
$
\mathbf
{x},
\mathbf
{y}
$
from orthogonal subspaces:
\only
<3>
{
$
\langle
\mathbf
{x},
\mathbf
{y}
\rangle
=
0
$
}
\vspace
{
1em
}
\begin
{
figure
}
\begin
{
dspPlot
}
[xticks=1,xout=true,yticks=2,sidegap=0]
{
-1, 1
}{
-1.25, 1.25
}
\moocStyle
\only
<1->
{
\dspText
(.2,-.8)
{
$
\mathbf
{x}
=
\sin
(
\pi
t
)
$
, antisymmetric
}}
\only
<2->
{
\dspText
(-.6,.8)
{
$
\mathbf
{y}
=
1
-
|t|
$
, symmetric
}}
\only
<1-2>
{
\dspFunc
{
x 180 mul sin
}}
\only
<2>
{
\dspFunc
[linecolor=orange]
{
x abs 1 exch sub
}}
\only
<3>
{
\dspFunc
[linecolor=lightgray]
{
x 180 mul sin
}
\dspFunc
[linecolor=lightgray]
{
x abs 1 exch sub
}
\pscustom
[fillstyle=solid,fillcolor=green!30,linestyle=none]
{
%
\dspFunc
[linecolor=green]
{
x 180 mul sin x abs 1 exch sub mul dup 0 ge
{}
{
pop 0
}
ifelse
}}
\pscustom
[fillstyle=solid,fillcolor=red!30,linestyle=none]
{
%
\dspFunc
[linecolor=red]
{
x 180 mul sin x abs 1 exch sub mul dup 0 ge
{
pop 0
}
{}
ifelse
}}}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Inner product in
$
L_
2
[-
1
,
1
]
$
}
\begin
{
center
}
sinusoids with frequencies integer multiples of a fundamental
\vspace
{
1em
}
\begin
{
figure
}
\begin
{
dspPlot
}
[xticks=1,xout=true,yticks=2,sidegap=0]
{
-1, 1
}{
-1.2, 1.2
}
\moocStyle
\only
<1-2>
{
\dspText
(1.3,-.5)
{{
\color
{
darkred
}
$
\mathbf
{x}
=
\sin
(
4
\pi
t
)
$
}}}
\only
<2-3>
{
\dspText
(1.3,.5)
{{
\color
{
orange
}
$
\mathbf
{y}
=
\sin
(
5
\pi
t
)
$
}}}
\only
<1-2>
{
\dspFunc
{
x 180 mul 4 mul sin
}}
\only
<2>
{
\dspFunc
[linecolor=orange]
{
x 180 mul 5 mul sin
}}
\only
<3>
{
\dspFunc
[linecolor=lightgray]
{
x 180 mul 4 mul sin
}
\dspFunc
[linecolor=lightgray]
{
x 180 mul 5 mul sin
}}
\only
<3-4>
{
\pscustom
[fillstyle=solid,fillcolor=green!30,linestyle=none]
{
%
\dspFunc
[linecolor=green]
{
x 180 mul 4 mul sin x 180 mul 5 mul sin mul dup 0 ge
{}
{
pop 0
}
ifelse
}}
\pscustom
[fillstyle=solid,fillcolor=red!30,linestyle=none]
{
%
\dspFunc
[linecolor=red]
{
x 180 mul 4 mul sin x 180 mul 5 mul sin mul dup 0 ge
{
pop 0
}
{}
ifelse
}}}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Norm vs Distance
}
\begin
{
itemize
}
[<+->]
\item
inner product defines a norm:
$
\|
\mathbf
{x}
\|
=
\sqrt
{
\langle
\mathbf
{x} ,
\mathbf
{x}
\rangle
}
$
\item
norm defines a distance:
$
d
(
\mathbf
{x},
\mathbf
{y}
)
=
\|
\mathbf
{x}
-
\mathbf
{y}
\|
$
\vspace
{
2em
}
\end
{
itemize
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Norm and distance in
$
\mathbb
{R}^
2
$
}
\begin
{
center
}
\only
<1>
{
$
\|\mathbf
{x}
\|
=
\sqrt
{
\langle
\mathbf
{x},
\mathbf
{x}
\rangle
}
=
\sqrt
{x_
0
^
2
+
x_
1
^
2
}
$
}
\only
<2>
{
$
\|\mathbf
{y}
\|
=
\sqrt
{
\langle
\mathbf
{y},
\mathbf
{y}
\rangle
}
=
\sqrt
{y_
0
^
2
+
y_
1
^
2
}
$
}
\only
<3>
{
$
\|\mathbf
{x}
-
\mathbf
{y}
\|
=
\sqrt
{
(
x_
0
-
y_
0
)
^
2
+
(
x_
1
-
y_
1
)
^
2
}
$
}
\psset
{
unit=8mm
}
\begin
{
pspicture
}
(-1,0)(8,6)
\only
<1->
{
\psline
{
->
}
(6,1)
\uput
[-45]
(3,0.5)
{
$
\|\mathbf
{x}
\|
$
}}
\only
<2->
{
\psline
{
->
}
(4,3)
\uput
[135]
(2,1.5)
{
$
\|\mathbf
{y}
\|
$
}}
\only
<3->
{
\psline
[linecolor=blue]
{
->
}
(4,3)(6,1)
\uput
[45]
(5,2)
{
$
\|\mathbf
{x
-
y}
\|
$
}}
\end
{
pspicture
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Distance in
$
L_
2
[-
1
,
1
]
$
: the Mean Square Error
}
\begin
{
center
}
$
\|\mathbf
{x}
-
\mathbf
{y}
\|
^
2
=
\int
_{
-
1
}^{
1
} |x
(
t
)-
y
(
t
)
|^
2
\,
dt
\only
<
3
>{
=
2
}
$
\begin
{
figure
}
\begin
{
dspPlot
}
[xticks=1,xout=true,yticks=2,sidegap=0]
{
-1, 1
}{
-2.2, 2.2
}
\moocStyle
\only
<1-2>
{
\dspText
(1.3,-.5)
{{
\color
{
darkred
}
$
\mathbf
{x}
=
\sin
(
4
\pi
t
)
$
}}}
\only
<2>
{
\dspText
(1.3,.5)
{{
\color
{
orange
}
$
\mathbf
{y}
=
\sin
(
5
\pi
t
)
$
}}}
\only
<1-2>
{
\dspFunc
{
x 180 mul 4 mul sin
}}
\only
<2>
{
\dspFunc
[linecolor=orange]
{
x 180 mul 5 mul sin
}}
\only
<3>
{
\dspFunc
[linecolor=lightgray]
{
x 180 mul 4 mul sin
}
\dspFunc
[linecolor=lightgray]
{
x 180 mul 5 mul sin
}
\dspFunc
[linecolor=blue]
{
x 180 mul 4 mul sin x 180 mul 5 mul sin sub
}}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
A familiar result
}
\begin
{
columns
}
\begin
{
column
}{
.6
\paperwidth
}
Pythagorean theorem:
\[
\|
\mathbf
{x}
+
\mathbf
{y}
\|
^
2
=
\|
\mathbf
{x}
\|
^
2
+
\|
\mathbf
{y}
\|
^
2
\mbox
{ for }
\mathbf
{x}
\perp
\mathbf
{y}
\]
\end
{
column
}
\begin
{
column
}{
.3
\paperwidth
}
\centering
\includegraphics
[height=6.5cm]
{
pythagoras.eps
}
\\
\footnotesize
From Euclid's elements by Oliver Byrne (1810 - 1880)
\\
\end
{
column
}
\end
{
columns
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Inner product for signals
}
\begin
{
center
}
\only
<1>
{
\[
\langle
\mathbf
{x} ,
\mathbf
{y}
\rangle
=
\sum
_{n
=
0
}^{N
-
1
} x^
*[
n
]
y
[
n
]
\]
well defined for all finite-length vectors (i.e. vectors in
$
\mathbb
{C}^{N}
$
)
}
\only
<2>
{
\[
\langle
\mathbf
{x} ,
\mathbf
{y}
\rangle
=
\sum
_{n
=
{
\color
{red}
-
\infty
}}^{{
\color
{red}
\infty
}} x^
*[
n
]
y
[
n
]
\]
careful: sum may explode!
}
\only
<3>
{
\[
\langle
\mathbf
{x} ,
\mathbf
{y}
\rangle
=
\sum
_{n
=
-
\infty
}^{
\infty
} x^
*[
n
]
y
[
n
]
\]
We require sequences to be
{
\em
square-summable
}
:
$
\sum
|x
[
n
]
|^
2
<
\infty
$
\\
\vspace
{
1em
}
Space of square-summable sequences:
$
\ell
_
2
(
\mathbb
{Z}
)
$
}
\end
{
center
}
\end
{
frame
}
\end
{
document
}
Event Timeline
Log In to Comment