Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F105444250
1_analogworld.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Mar 17, 07:17
Size
11 KB
Mime Type
text/x-tex
Expires
Wed, Mar 19, 07:17 (2 d)
Engine
blob
Format
Raw Data
Handle
24940605
Attached To
R2653 epfl
1_analogworld.tex
View Options
\documentclass[aspectratio=169]{beamer}
\def\stylepath{../styles}
\usepackage{\stylepath/com303}
\begin{document}
\begin{frame}
\frametitle{Two views of the world}
\begin{columns}
\begin{column}{0.5\paperwidth}
\centering
\includegraphics[width=0.4\paperwidth]{Picture_world_analog.eps}
\end{column}
\begin{column}{0.5\paperwidth}
\centering
\includegraphics[width=0.4\paperwidth]{Picture_world_digital.eps}
\end{column}
\end{columns}
\vspace{2em}
\centering Analog/continuous versus discrete/digital
\end{frame}
\begin{frame}
\frametitle{Two views of the world}
\begin{columns}
\begin{column}{0.3\paperwidth}
digital worldview:
\vspace{1em}
\begin{itemize}
\item arithmetic
\item combinatorics
\item computer science
\item DSP
\end{itemize}
\end{column}
\begin{column}{0.3\paperwidth}
analog worldview:
\vspace{1em}
\begin{itemize}
\item calculus
\item distributions
\item system theory
\item electronics
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Two views of the world}
\begin{columns}
\begin{column}{0.4\paperwidth}
digital worldview:
\vspace{1em}
\begin{itemize}
\item countable integer index $n$
\item sequences $x[n] \in \ell_2(\mathbb{Z})$
\item frequency $\omega \in [-\pi, \pi]$
\item DTFT: $\ell_2(\mathbb{Z}) \mapsto L_2([-\pi,\pi])$
\end{itemize}
\end{column}
\begin{column}{0.4\paperwidth}
analog worldview:
\vspace{1em}
\begin{itemize}
\item real-valued time $t$ (sec)
\item functions $x(t) \in L_2(\mathbb{R})$
\item frequency $\Omega \in \mathbb{R}$ (rad/sec)
\item FT: $L_2(\mathbb{R}) \mapsto L_2(\mathbb{R})$
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Bridging the gap}
\setbeamercovered{invisible}
\begin{center}
\begin{figure}
\begin{dspBlocks}{2}{1}
$x[n]~~$ & \BDfilter{sound card} & \raisebox{-1.2em}{\includegraphics[height=6em]{speaker.eps}} \\
& [mnode=circle] $T_s$ & \hspace{-5cm} {\em system clock} \\
\ncline{->}{2,2}{1,2}
\ncline{->}{1,1}{1,2}\ncline{->}{1,2}{1,3}
\end{dspBlocks}
\end{figure}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Bridging the gap}
\setbeamercovered{invisible}
\begin{center}
\begin{figure}
\begin{dspBlocks}{2}{1}
\raisebox{-1.5em}{\includegraphics[height=5em]{mike.eps}} & \BDfilter{sound card} & ~~$x[n]$\\
& [mnode=circle] $T_s$ & \hspace{-3cm} {\em system clock} \\
\ncline{->}{2,2}{1,2}
\ncline{->}{1,1}{1,2}\ncline{->}{1,2}{1,3}
\end{dspBlocks}
\end{figure}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Bridging the gap}
\begin{figure}
\center
\psset{unit=3.5cm}%
\begin{pspicture}(-1,-1)(1,1)%
\uput[0](0.6,0){$x[n]$}
\uput[90](0,0.6){\color{darkred} sampling}
\uput[180](-0.6,0){$x(t)$}
\uput[270](0,-0.6){\color{darkred} interpolation}
\psarc[linewidth=3pt,linecolor=gray]{<-}(0,0){0.73}{10}{65}
\psarc[linewidth=3pt,linecolor=gray]{<-}(0,0){0.73}{115}{170}
\psarc[linewidth=3pt,linecolor=gray]{<-}(0,0){0.73}{190}{235}
\psarc[linewidth=3pt,linecolor=gray]{<-}(0,0){0.73}{305}{350}
\end{pspicture}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Digital processing of signals from/to the analog world}
\begin{itemize}
\item input is continuous-time: $x(t)$
\item output is continuous-time: $y(t)$
\item processing is on sequences: $x[n], y[n]$
\end{itemize}
\vspace{1em}
\centering
\begin{figure}
\begin{dspBlocks}{1.5}{.5}
analog world~~ & \BDfilter{processing} & ~~analog world \\
\ncline{->}{1,1}{1,2}\ncline{->}{1,2}{1,3}
\end{dspBlocks}
\end{figure}
examples: MP3, digital photography
\end{frame}
\begin{frame}
\frametitle{Digital processing of signals to the analog world}
\begin{itemize}
\item input is discrete-time: $x[n]$
\item output is continuous-time: $y(t)$
\item processing is on sequences: $x[n], y[n]$
\end{itemize}
\vspace{1em}
\centering
\begin{figure}
\begin{dspBlocks}{1.5}{.5}
digital world~~ & \BDfilterMulti{processing \\ for synthesis} & ~~analog world \\
\ncline{->}{1,1}{1,2}\ncline{->}{1,2}{1,3}
\end{dspBlocks}
\end{figure}
examples: computer graphics, video games
\end{frame}
\begin{frame}
\frametitle{Digital processing of signals from the analog world}
\begin{itemize}
\item input is continuous-time: $x(t)$
\item output is discrete-time: $y[n]$
\item processing is on sequences: $x[n], y[n]$
\end{itemize}
\vspace{1em}
\centering
\begin{figure}
\begin{dspBlocks}{1.5}{.5}
analog world~~ & \BDfilterMulti{processing \\ for analysis} & ~~digital world \\
\ncline{->}{1,1}{1,2}\ncline{->}{1,2}{1,3}
\end{dspBlocks}
\end{figure}
examples: storage(compression), control systems, monitoring
\end{frame}
\intertitle{continuous-time signal processing}
\begin{frame}
\frametitle{About continuous time}
\begin{itemize}[<+->]
\item time: real variable $t$
\item signal $x(t)$: complex functions of a real variable
\item finite energy: $x(t) \in L_2(\mathbb{R})$
\item inner product in $L_2(\mathbb{R})$
\[
\langle x(t), y(t) \rangle = \int_{-\infty}^{\infty} x^*(t)y(t) dt
\]
\item energy: $||x(t)||^2 = \langle x(t), x(t) \rangle$
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Analog LTI filters}
\begin{figure}
\center
\begin{dspBlocks}{2.5}{1}
$x(t)$~~ & \rnode{F}{\BDfilter{$\mathcal{H}$}} & ~~$y(t)$
\ncline{->}{1,1}{1,2}\ncline{->}{1,2}{1,3}
\end{dspBlocks}
\end{figure}
\vspace{1em}
\begin{align*}
y(t) &= (x \ast h)(t) \\ \pause
&= \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau \\ \pause
&= \langle h^*(t-\tau), x(\tau) \rangle
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Fourier analysis}
\begin{itemize}[<+->]
\item in discrete time max angular frequency is $\pm\pi$
\item in continuous time no max frequency: $\Omega \in \mathbb{R}$
\item concept is the same: similarity to sinusoidal components
\begin{align*}
X(j\Omega) &= \langle e^{j\Omega t}, x(t) \rangle \\
&= \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt \qquad \leftarrow\mbox{\em not periodic!} \\ \\
x(t) &= \frac{1}{2\pi}\int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega
\end{align*}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Real-world frequency}
\begin{itemize}
\item $\Omega$ expressed in rad/s
\item $F = \displaystyle \frac{\Omega}{2\pi},$ expressed in Hertz ($1/s$)
\item period $T = \displaystyle \frac{1}{F} = \frac{2\pi}{\Omega}$
\end{itemize}
\end{frame}
\def\s{10 }
\begin{frame}
\frametitle{Example}
\begin{center}
$x(t) = e^{-\frac{t^2}{2\sigma^2}}$
\begin{dspPlot}[xticks=10,xout=true,sidegap=0,ylabel={$x(t)$}]{-50,50}{0,1.1}
\moocStyle
\dspFunc{x dup mul neg 2 \s \s mul mul div 2.718281828459046 exch exp}
\end{dspPlot}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Example}
\begin{center}
$X(j\Omega) = \sigma\sqrt{2\pi} e^{-\frac{\sigma^2}{2}\Omega^2}$
\begin{dspPlot}[xticks=10,xout=true,sidegap=0,yticks=custom,ylabel={$X(j\Omega)$}]{-50,50}{0,26}
\moocStyle
\dspFunc{x dup mul neg 2 \s \s mul mul 2 div div 2.718281828459046 exch exp \s 2.506628274631 mul mul}
\dspCustomTicks[axis=y]{25 $\sigma\sqrt{2\pi}$}
\end{dspPlot}
\end{center}
\end{frame}
\def\s{10 }
\begin{frame}
\frametitle{Example}
\begin{center}
$x(t) = \cos(2\pi f_0 t)$
\begin{dspPlot}[xticks=10,xout=true,sidegap=0,ylabel={$x(t)$}]{-4,4}{-1.1,1.1}
\moocStyle
\dspFunc{x 360 mul cos}
\dspCustomTicks[axis=x]{1 $1/f_0$ 2 $2/f_0$ 3 $3/f_0$ -1 $-1/f_0$}
\end{dspPlot}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Example}
\begin{center}
$X(j\Omega) = 2\pi\delta(\Omega \pm f_0/2\pi)$
\begin{dspPlot}[xout=true,xticks=10,yticks=10,sidegap=0,ylabel={$X(j\Omega)$}]{-2,2}{0,1.1}
\moocStyle
\dspDiracs{1 1 -1 1}
\dspCustomTicks[axis=x]{1 $f_0/2\pi$ -1 $-f_0/2\pi$}
\dspCustomTicks[axis=y]{1 $2\pi$}
\end{dspPlot}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Convolution theorem}
\begin{figure}
\center
\begin{dspBlocks}{1}{1}
$x(t)$~~ & \rnode{F}{\BDfilter{$\mathcal{H}$}} & ~~$y(t)$
\ncline{->}{1,1}{1,2}\ncline{->}{1,2}{1,3}
\end{dspBlocks}
\end{figure}
\vspace{2em}
\[
Y(j\Omega) = X(j\Omega)\,H(j\Omega)
\]
\end{frame}
\begin{frame}
\frametitle{A new concept: bandlimited functions}
\centering
$\Omega_N$-bandlimitedness:
\[
X(j\Omega) = 0 \quad \mbox{for } |\Omega| > \Omega_N
\]
\end{frame}
\begin{frame}
\frametitle{Prototypical bandlimited function}
\center
\begin{figure}
\begin{dspPlot}[xtype=freq,xticks=custom,yticks=custom]{-1.5,1.5}{0,1.4}
\moocStyle
\dspFunc{x \dspRect{0}{1}}
\dspCustomTicks[axis=x]{0 0 -0.5 $-\Omega_N$ 0.5 $\Omega_N$}
\dspCustomTicks[axis=y]{1 $G$}%{1 $\pi/\Omega_N$}
\end{dspPlot}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{The prototypical bandlimited function}
\note<1>{We will normalize so that a) area is $2\pi$ \\ or (equivalent) b) max time-domain \\ value is 1}
\[
\Phi(j\Omega) = G\, \rect\left(\frac{\Omega}{2\Omega_N}\right)
\]
\vspace{1em}
\pause
\begin{align*}
\varphi(t) &= \frac{1}{2\pi}\int_{-\infty}^{\infty} \Phi(j\Omega) e^{j\Omega t} d\Omega \\
&= \ldots \\
&= G\,\frac{\Omega_N}{\pi}\sinc\left(\frac{\Omega_N}{\pi}t\right)
\end{align*}
\end{frame}
\begin{frame}
\frametitle{The prototypical bandlimited function}
\begin{itemize}
\item normalization: $G = \displaystyle \frac{\pi}{\Omega_N}$
\item total bandwidth: $\Omega_B = 2\Omega_N$
\item define $T_s = \displaystyle \frac{2\pi}{\Omega_B} = \frac{\pi}{\Omega_N}$
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{The prototypical bandlimited function}
\begin{align*}
\Phi(j\Omega) &= \frac{\pi}{\Omega_N} \mbox{rect}\left(\frac{\Omega}{2\Omega_N}\right) \\ \\
\varphi(t) &= \mbox{sinc}\left(\frac{t}{T_s}\right)
\end{align*}
\end{frame}
\begin{frame}
\frametitle{The prototypical bandlimited function}
\center
\begin{figure}
\begin{dspPlot}[xtype=freq,xticks=custom,yticks=custom]{-1.5,1.5}{0,1.4}
\moocStyle
\dspFunc{x \dspRect{0}{1}}
\dspCustomTicks[axis=x]{0 0 -0.5 $-\Omega_N$ 0.5 $\Omega_N$}
\dspCustomTicks[axis=y]{1 $\pi/\Omega_N$}
\end{dspPlot}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{The prototypical bandlimited function}
\center
\begin{figure}
\begin{dspPlot}[xticks=custom,sidegap=0,xout=true]{-8,8}{-0.3,1.2}
\moocStyle
\dspFunc{x \dspSinc{0}{1}}
\dspCustomTicks[axis=x]{0 0 1 $T_s$ -1 $-T_s$ 2 $2T_s$ 3 $3T_s$ 4 $4T_s$}
\end{dspPlot}
\end{figure}
\end{frame}
\end{document}
Event Timeline
Log In to Comment