\item DFT, DFS: change of basis in $\mathbb{C}^{N}$
\item DTFT: ``formal'' change of basis in $\ell_2(\mathbb{Z})$
\item basis vectors are ``building blocks'' for any signal
\vspace{1em}
\item DFT: numerical algorithm (computable)
\item DTFT: mathematical tool (proofs)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Embedding finite-length signals}
\begin{itemize}[<+->]
\item $N$-tap signal $x[n]$
\item natural spectral representation: DFT $X[k]$
\item two ways to embed $x[n]$ into an infinite sequence:
\vspace{1ex}
\begin{itemize}
\item periodic extension:
$
\tilde{x}[n] = x[n \mod N]
$
\item finite-support extension:
$
\bar{x}[n] = \begin{cases} x[n] & 0 \leq n < N \\ 0 & \mbox{otherwise} \end{cases}
$
\end{itemize}
\item how does $X[k]$ relate to the DTFT of the embedded signals?
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{DTFT of periodic signals}
\note<1>{use the DFS reconstruction formula in the second passage.\\Over the $[-\pi, \pi]$ interval the DTFT of a periodic sequence\\ is a set of regularly spaced deltas at the $N$ roots of unity\\ whose amplitude is proportional to the DFS (DFT)\\ coefficients of the sequence.\\ In other words, \emph{the DTFT is uniquely determined by the DFS and vice versa}}