Consider the DFT expressed as a as a matrix/vector multiplication and call $\mathbf{W}$ the $N\times N$ DFT matrix. Is $\mathbf{W}$ Hermitian-symmetric for all values of $N$?
Let $x[n]\longleftrightarrow X(e^{j\omega})$ be a DTFT transform-pair.
\begin{enumerate}
\item Assume $X(e^{j\omega})$ to be differentiable, compute the inverse DTFT of $j\frac{d}{d \omega} X(e^{j\omega})$.
\item Compute the inverse DTFT of $\frac{d}{d\omega} \left(\frac{X(e^{j\omega})}{\pi}\right)-2$. Which property of the DTFT allows you to simplify the calculation?
\begin{exercise}{DTFT,DFT, and numerical computations}
Consider the following infinite non-periodic discrete time signal, where $M\in\mathbb{N}$:
\[
x[n]=\begin{cases}
0 & n<0,\\
1 & 0\leq n< M,\\
0 & n\geq M.
\end{cases}
\]
The goal is to plot the magnitude of $X(e^{j\omega})$ using a numerical package. Using a numerical package implies that we will only obtain an approximation of the true value.
\begin{enumerate}
\item Compute $X(e^{j\omega})$ analytically
\item Using a numerical package plot $|X(e^{j\omega})|$ over $[-\pi\pi]$ for $M=20$ using 10,000 points.
\item Now generate a finite sequence $\hat{x}[n]$ of length $N=30$ such that $\hat{x}[n]=x[n]$ for $n=0,1, \ldots, N-1$. Compute its DFT using the numerical package's FFT algorithm and plot its magnitude. Compare it with the plot obtained previously.
\item Repeat now for different values of $N =50, 100, 1000$. What can you conclude?