Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F112123256
6_hilbert.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, May 7, 21:03
Size
1 KB
Mime Type
text/x-tex
Expires
Fri, May 9, 21:03 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
26020195
Attached To
R2653 epfl
6_hilbert.tex
View Options
\documentclass[aspectratio=169]{beamer}
%\documentclass[aspectratio=169,handout]{beamer}
\def\stylepath{../styles}
\usepackage{\stylepath/com303}
\usepackage{pst-3dplot}
%\setbeameroption{show only notes}\def\logoEPFL{}
\setbeameroption{show notes}
\begin{document}
\begin{frame} \frametitle{Hilbert Space -- the ingredients:}
\begin{enumerate}[<+->]
\item a vector space: $H(V, \mathbb{C})$
\item an inner product: $\langle \cdot, \cdot \rangle \,:\, V \times V \rightarrow \mathbb{C}$
\item completeness
\end{enumerate}
\end{frame}
\def\tickA#1#2{\psline(#1,0.8)(#1,1.2)\rput[t]{0}(#1,0.7){#2}}
\def\tickB#1#2#3{\psline(#1,0.8)(#1,1.2)\rput[t]{0}(#1,#3){\rnode{A}{#2}}\pnode(#1,0.8){B}\nccurve[angleA=0,angleB=-90]{->}{A}{B}}
\begin{frame} \frametitle{Completeness}
\centering
\uncover<1->{
limiting operations must yield vector space elements \\
\vspace{2em}}
\uncover<2->{
Example of an {\em incomplete}\/ space: the set of rational numbers
\[
x_n = \sum_{k = 0}^{n} \frac{1}{k!} \in \mathbb{Q}
\qquad\mbox{but}\qquad
\lim_{n\rightarrow\infty}x_n = e \not\in \mathbb{Q}
\]}
\begin{center}
\psset{xunit=40mm,yunit=10mm}
\begin{pspicture}(0,0)(3,2)
\only<3->{
\psline(0,1)(3,1)
\tickA{0}{$0$}\tickA{1}{$1$}
\tickA{3}{$3$}
\tickA{2}{$x_1 = 2$}
\tickA{2.5}{$x_2$}
\tickA{2.6667}{$x_3$}
\tickB{2.7083}{$x_4$}{0}
\tickB{2.7167}{$x_5$}{-0.5}}
\end{pspicture}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Signals in Hilbert Space}
Why did we do all this?
\begin{itemize}[<+->]
\item finite-length and periodic signals live in $\mathbb{C}^N$
\item infinite-length signals live in $\ell_2(\mathbb{Z})$
\vspace{1em}
\item different bases are different observation tools for signals
\item subspace projections are useful in filtering and compression
\end{itemize}
\end{frame}
\end{document}
Event Timeline
Log In to Comment