\item use Chebyshev polynomials to transform $H_d(e^{j\omega})$ into $P(x)$
\item rewrite specifications to obtain global error function $E(x)$ over passband + stopband
\item iteratively adjust extrema of the error function
\item use alternation theorem as stopping condition
\item verify stopband and passband error; increase $M$ and repeat if necessary
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Alternation Theorem}
Ingredients:
\begin{itemize}
\item$\{I_k \}$ set of disjoint intervals on the real line, $I =\bigcup_k I_k$
\item$P(x)$ polynomial of degree $L$,
\item$D(x)$ target function
\item$W(x)$ positive weighting function
\item$E(x)= W(x)[D(x)- P(x)]$ approximation error function
\item$E_{\max} =\max_{x \in I} \{|E(x)|\}$
\end{itemize}
\pause
\vspace{1em}
$P(x)$ is the \emph{unique} order-$L$ polynomial which minimizes $E_{\max}$ if and only if there exist \emph{at least}$L+2$ successive values $x_i$ in $I$ such that $|E(x_i)| = E_{\max}$ and $E(x_i)=-E(x_{i+1})$.