\item (for those who remember...) it's like changing the speed of a record player
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Space of bandlimited functions}
\note<1>{here we ask the question of whether \\ we can invert the process. \\ Given an $\ell_2$ sequence we get a \\ unique BL function, can we get \\ a unique sequence from a BL function so \\ that we can get the BL function back \\ with sinc interpolation?}
\begin{frame} \frametitle{Let's lighten the notation}
\centering
for a while we will proceed with $T_s = 1$ (so that $F_s = 1$ as well)
(derivations in the general case are in the book)
\end{frame}
\begin{frame} \frametitle{The road to the sampling theorem}
claims:
\begin{itemize}[<+->]
\item the space of $1$-bandlimited functions is a Hilbert space
\item the functions $\varphi^{(n)}(t) = \sinc(t-n)$, with $n \in \mathbb{Z}$, form a basis for the space
\item if $x(t)$ is $1$-BL, the sequence $x[n] = x(n)$, with $n \in \mathbb{Z}$, is a sufficient representation\\ (i.e. we can reconstruct $x(t)$ from $x[n]$)
\end{itemize}
\end{frame}
\begin{frame} \frametitle{The space $1$-BL}
\begin{itemize}[<+->]
\item clearly a vector space because $1$-BL $\subset L_2(\mathbb{R})$ (and linear combinations of $1$-BL functions are $1$-BL functions)
\item inner product is standard inner product in $L_2(\mathbb{R})$
\item completeness... that's more delicate
\end{itemize}
\end{frame}
\begin{frame} \frametitle{The space of $1$-BL functions}
\begin{frame} \frametitle{A basis for the $1$-BL space}
\note<1>{exploit the symmetry of the sinc \\ $\sinc(m-t) = \sinc(t-m)$ and \\ use the change of variable $\tau=t-n$. \\ ~\\ symmetry of the sinc will be used many times \\ later, so stress that}
\[
\varphi^{(n)}(t) = \sinc(t-n), \quad\quad n \in \mathbb{Z}