Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F104957142
1_aliasingintro.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Mar 13, 16:29
Size
13 KB
Mime Type
text/x-tex
Expires
Sat, Mar 15, 16:29 (2 d)
Engine
blob
Format
Raw Data
Handle
24886676
Attached To
R2653 epfl
1_aliasingintro.tex
View Options
\documentclass
[aspectratio=169]
{
beamer
}
\def\stylepath
{
../styles
}
\usepackage
{
\stylepath
/com303
}
\begin
{
document
}
\begin
{
frame
}
\frametitle
{
Sinc Sampling
}
\setbeamercovered
{
invisible
}
\[
\vphantom
{
\sinc\left
(
\frac
{t
-
nT_s}{T_s}
\right
)
\rangle
}
x
[
n
]
=
\only
<
1
>{
\langle
\sinc\left
(
\frac
{t
-
nT_s}{T_s}
\right
)
, x
(
t
)
\rangle
}
\only
<
2
-
>{
(
\sinc
_{T_s}
\ast
x
)(
nT_s
)
}
\]
\uncover
<3->
{
\begin
{
figure
}
[t]
\center
\begin
{
dspBlocks
}{
1
}{
0.4
}
$
x
(
t
)
$
~
&
\BDlowpass
&
&
\raisebox
{
-1.4em
}{
\psframebox
[linewidth=1.5pt]
{
%
\psset
{
xunit=1em,yunit=1em,linewidth=1.8pt
}
%
\pspicture
(-3,-1.8)(2,1.8)
%
\psline
(-2.8,0)(-1.6,0)(1.2,1.4)
\psline
(1.1,0)(1.8,0)
\psarc
[linewidth=1pt]
{
<-
}
(-1.6,0)
{
2em
}{
-10
}{
55
}
\endpspicture
}}
&
$
x
[
n
]
$
\\
&
$
F_s
$
&
&
$
T_s
$
\psset
{
linewidth=1.5pt
}
\ncline
{
->
}{
1,1
}{
1,2
}
\ncline
{
1,2
}{
1,4
}
%^{$x_{LP}(t)$}
\ncline
{
->
}{
1,4
}{
1,5
}
\end
{
dspBlocks
}
\end
{
figure
}}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Sinc Sampling for
$
F_s
$
-BL signals
}
\setbeamercovered
{
invisible
}
\[
x
[
n
]
=
(
\sinc
_{T_s}
\ast
x
)(
nT_s
)
=
T_s
\,
x
(
nT_s
)
\]
\vspace
{
1em
}
\begin
{
figure
}
[t]
\center
%\small
\begin
{
dspBlocks
}{
1
}{
0.4
}
$
x
(
t
)
$
~
&
&
&
\raisebox
{
-1.4em
}{
\psframebox
[linewidth=1.5pt]
{
%
\psset
{
xunit=1em,yunit=1em,linewidth=1.8pt
}
%
\pspicture
(-3,-1.8)(2,1.8)
%
\psline
(-2.8,0)(-1.6,0)(1.2,1.4)
\psline
(1.1,0)(1.8,0)
\psarc
[linewidth=1pt]
{
<-
}
(-1.6,0)
{
2em
}{
-10
}{
55
}
\endpspicture
}}
&
$
x
[
n
]
$
\\
&
&
&
$
T_s
$
\psset
{
linewidth=1.5pt
}
\ncline
{
->
}{
1,1
}{
1,4
}
\ncline
{
->
}{
1,4
}{
1,5
}
\end
{
dspBlocks
}
\end
{
figure
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
``Raw'' sampling - can we always do that?
}
\[
x
[
n
]
=
x
(
nT_s
)
\]
\vspace
{
2em
}
\begin
{
figure
}
[t]
\center
%\small
\begin
{
dspBlocks
}{
1
}{
0.1
}
$
x
(
t
)
$
~~
&
\BDsampler
&
~~
$
x
[
n
]
$
\\
&
$
T_s
$
&
\psset
{
linewidth=1.5pt
}
\ncline
{
-
}{
1,1
}{
1,2
}
\ncline
{
->
}{
1,2
}{
1,3
}
\end
{
dspBlocks
}
\end
{
figure
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Remember the wagonwheel effect?
}
\begin
{
center
}
\movie
[height=6.5cm,width=6.5cm,poster]
{}{
ww.avi
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
The continuous-time complex exponential
}
\[
x
(
t
)
=
e^{j
2
\pi
f_
0
t}
\]
\vspace
{
1em
}
\begin
{
itemize
}
[<+->]
\item
always periodic, period
$
t_
0
=
1
/
f_
0
$
\item
all angular speeds are allowed
\item
$
\FT
{e^{j
2
\pi
f_
0
t}}
=
\delta
(
f
-
f_
0
)
$
\item
highest (and only) frequency is
$
f_
0
$
\end
{
itemize
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
The continuous-time complex exponential
}
\begin
{
center
}
\begin
{
figure
}
\begin
{
dspPZPlot
}
[width=6cm,circle=0,xticks=none,yticks=none]
{
1.5
}
\dspCPCircle
[linewidth=0.5pt,linecolor=lightgray]
{
0,0
}{
1
}
\dspCPArc
[linewidth=1pt]
{
1
}{
0
}{
60
}{}
\dspCPCirclePoint
[linecolor=darkred,toorg=true]
{
1
}{
30
}{
$
e^{j
2
\pi
f_
0
t}
$
}
\end
{
dspPZPlot
}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Raw samples of the continuous-time complex exponential
}
\[
x
[
n
]
=
e^{j
2
\pi
f_
0
n T_s}
\]
\vspace
{
1em
}
\begin
{
itemize
}
[<+->]
\item
raw samples are snapshots at regular intervals of the rotating point
\item
resulting digital frequency is
$
\omega
_
0
=
2
\pi
f_
0
T_s
=
2
\pi
(
f_
0
/
F_s
)
$
\end
{
itemize
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Easy:
$
f_
0
< F_s
/
2
\quad
\Rightarrow
\quad
\omega
_
0
<
\pi
$
}
\begin
{
center
}
\begin
{
figure
}
\def\a
{
35
}
\def\s
{
6
}
\begin
{
dspPZPlot
}
[width=6cm,circle=0,xticks=none,yticks=none]
{
1.5
}
\dspCPCircle
[linewidth=0.5pt,linecolor=lightgray]
{
0,0
}{
1
}
\multido
{
\n
=0+1
}{
\s
}{
%
\FPupn\anp
{
\n
{}
\a
{}
* clip
}
%
\FPupn\ann
{
\anp
{}
\a
{}
+ clip
}
%
\dspCPCirclePoint
[linecolor=lightgray,toorg=true]
{
1
}{
\anp
}{
$
x
[
\n
]
$
}
\dspCPArc
{
0.6
}{
\anp
}{
\ann
}{}}
\FPupn\anp
{
\s
{}
\a
{}
* clip
}
%
\FPupn\ann
{
\anp
{}
\a
{}
+ clip
}
%
\dspCPCirclePoint
[toorg=true,linecolor=darkred]
{
1
}{
\anp
}{
$
x
[
\s
]
$
}
\dspCPArc
[linestyle=dashed,linecolor=gray]
{
0.6
}{
\anp
}{
\ann
}{}
\end
{
dspPZPlot
}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\def\ceStep
#1
{
% define \a (freq) and \p (initial phase)
\FPupn\np
{
1 #1 - clip
}
\FPupn\anp
{
\np
{}
\a
{}
*
\p
{}
+ clip
}
\FPupn\anpp
{
\a
{}
\anp
{}
- clip
}
%
\only
<#1->
{
\dspCPCirclePoint
[linecolor=lightgray,toorg=true]
{
1
}{
\anpp
}{}}
\only
<#1>
{
\dspCPCirclePoint
[linecolor=red,toorg=true]
{
1
}{
\anp
}{
$
x
[
\np
]
$
}
\dspCPArc
{
0.6
}{
\anpp
}{
\anp
}{
$
\omega
_
0
$
}}}
\begin
{
frame
}
\frametitle
{
Tricky:
$
F_s
/
2
< f_
0
< F_s
\quad
\Rightarrow
\quad
\pi
<
\omega
_
0
<
2
\pi
$
}
\begin
{
center
}
\begin
{
figure
}
\begin
{
dspPZPlot
}
[width=6cm,circle=0,xticks=none,yticks=none]
{
1.5
}
\dspCPCircle
[linewidth=0.5pt,linecolor=lightgray]
{
0,0
}{
1
}
\def\a
{
350
}
\def\p
{
0
}
\def\N
{
5
}
\only
<1>
{
\dspCPCirclePoint
[linecolor=red,toorg=true]
{
1
}{
\p
}{
$
x
[
0
]
$
}}
\multido
{
\n
=2+1
}{
\N
}{
\ceStep
{
\n
}}
\FPupn\np
{
1
\N
{}
+ clip
}
\only
<
\np
->
{
\FPupn\anp
{
\a
{}
360 -
\N
{}
* -1 * clip
}
\dspCPArcn
[linewidth=3pt,linecolor=red]
{
0.8
}{
0
}{
\anp
}{}}
\end
{
dspPZPlot
}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\def\ceStep
#1
{
% define \a (freq) and \p (initial phase)
\FPupn\np
{
1 #1 - clip
}
\FPupn\anp
{
\np
{}
\a
{}
*
\p
{}
+ clip
}
\FPupn\anpp
{
\a
{}
\anp
{}
- clip
}
%
\def\psspace
{
}
\only
<#1->
{
\dspCPCirclePoint
[linecolor=lightgray,toorg=true]
{
1
}{
\anpp
}{}}
\only
<#1>
{
\dspCPCirclePoint
[linecolor=red,toorg=true]
{
1
}{
\anp
}{
$
x
[
\np
]
$
}
\parametricplot
[linecolor=blue,linewidth=\dspTickLineWidth,arrows=->]
%
{
\anpp
}{
\anp
}{
t
\anpp
\psspace
sub 360 div 0.05 mul 0.5 add dup t cos mul exch t sin mul
}}}
\begin
{
frame
}
\frametitle
{
Trouble:
$
f_
0
> F_s
\quad
\Rightarrow
\quad
\omega
_
0
>
2
\pi
$
}
\begin
{
center
}
\begin
{
figure
}
\begin
{
dspPZPlot
}
[width=6cm,circle=0,xticks=none,yticks=none]
{
1.5
}
\dspCPCircle
[linewidth=0.5pt,linecolor=lightgray]
{
0,0
}{
1
}
\def\a
{
380
}
\def\p
{
0
}
\def\N
{
5
}
\only
<1>
{
\dspCPCirclePoint
[linecolor=red,toorg=true]
{
1
}{
\p
}{
$
x
[
0
]
$
}}
\multido
{
\n
=2+1
}{
\N
}{
\ceStep
{
\n
}}
\FPupn\np
{
1
\N
{}
+ clip
}
\end
{
dspPZPlot
}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Aliasing
}
\begin
{
figure
}
[t]
\center
%\small
\begin
{
dspBlocks
}{
1.8
}{
0.1
}
$
x
(
t
)
$
~~
&
\BDsampler
&
\BDfilter
{
interp
}
&
~~
$
\hat
{x}
(
t
)=
?
$
\\
&
$
T_s
$
&
$
T_s
$
\psset
{
linewidth=1.5pt
}
\ncline
{
-
}{
1,1
}{
1,2
}
\ncline
{
->
}{
1,2
}{
1,3
}^{
$
x
[
n
]
$
}
\ncline
{
->
}{
1,3
}{
1,4
}
\end
{
dspBlocks
}
\end
{
figure
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Aliasing
}
\centering
pick
$
T_s
$
;
$
F_s
=
1
/
T_s
$
\vspace
{
1em
}
input:
$
x
(
t
)
=
e^{j
2
\pi
f_
0
t}
$
digital frequency:
$
\omega
_
0
=
2
\pi
f_
0
/
F_s
$
\vspace
{
2em
}
\begin
{
tabular
}{
lll
}
&
digital frequency
&
$
\hat
{x}
(
t
)
$
\\
\hline
\\
{
\color
{
green
}
$
f_
0
< F_s
/
2
$
}
&
$
0
<
\omega
_
0
<
\pi
$
&
$
e^{j
2
\pi
f_
0
t}
$
\\
{
\color
{
green
}
$
f_
0
=
F_s
/
2
$
}
&
$
\omega
_
0
=
\pi
$
&
$
e^{j
2
\pi
f_
0
t}
$
\\
{
\color
{
orange
}
$
F_s
/
2
< f_
0
< F_s
$
}
&
$
\pi
<
\omega
_
0
<
2
\pi
$
&
{
\color
{
orange
}
$
e^{j
2
\pi
f_
1
t},
\quad
f_
1
=
f_
0
-
F_s <
0
$
}
\\
{
\color
{
red
}
$
f_
0
> F_s
$
}
&
$
\omega
_
0
>
2
\pi
$
&
{
\color
{
red
}
$
e^{j
2
\pi
f_
2
t},
\quad
f_
2
=
f_
0
\mod
F_s
$
}
\end
{
tabular
}
\end
{
frame
}
%\begin{frame}\frametitle{Aliasing}
% \centering
% $x(t) = e^{j\Omega_0 t}$
%
% $\Omega_N = \pi/T_s$
% \vspace{2em}
%
% \begin{tabular}{lll}
% & digital frequency & $\hat{x}(t)$ \\ \hline \\
% {\color{green} $T_s < \pi/\Omega_0$} & $0 < \omega_0 < \pi$ & $e^{j\Omega_0 t}$ \\
% {\color{orange} $\pi/\Omega_0 < T_s < 2\pi/\Omega_0$} & $\pi < \omega_0 < 2\pi$ & {\color{orange} $e^{j\Omega_1 t}, \quad \Omega_1 = \Omega_0 - 2\pi/T_s$}\\
% {\color{red} $T_s > 2\pi/\Omega_0$} & $\omega_0 > 2\pi$ & {\color{red} $e^{j\Omega_2 t}, \quad \Omega_2 = \Omega_0 \mod (2\pi/T_s)$}
% \end{tabular}
%
%\end{frame}
%
%
%\begin{frame} \frametitle{Again, with a simple sinusoid and using Hertz}
% \begin{align*}
% x(t) &= \cos(2\pi F_0 t) \\
% x[n] &= x(nT_s) = \cos(\omega_0 n) \\ \\ \\
% F_s &= 1/T_s \\
% \omega_0 &= 2\pi (F_0/F_s) \\
% \end{align*}
%\end{frame}
\def\cfreq
#1#2
{
\only
<#1>
{
\dspDiracs
{
#2 1
}}}
\def\start
{
4
}
\def\steps
{
18
}
\begin
{
frame
}
\frametitle
{
Aliasing of sinusoids: increasing the input frequency
}
\setbeamercovered
{
invisible
}
\begin
{
center
}
\begin
{
figure
}
% original spectrum
\begin
{
dspPlot
}
[sidegap=0,height=1.4cm,xticks=none,yticks=none,ylabel=
{
$
X
(
f
)
$
}
]
{
-5,5
}{
0,1.2
}
\moocStyle
\multido
{
\n
=
\start
+1
}{
\steps
}{
%
\FPupn\f
{
\start
{}
\n
{}
- 0.25 *
}
\cfreq
{
\n
}{
\f
}}
\dspCustomTicks
[axis=x]
{
0 0 1
$
F_s
/
2
$
-1
$
-
F_s
/
2
$
2
$
F_s
$
-2
$
-
F_s
$
3 ~ -3 ~ 4
$
2
F_s
$
-4
$
-
2
F_s
$
}
\pnode
(-1,0)
{
A
}
\pnode
(1,0)
{
B
}
\end
{
dspPlot
}
\vspace
{
1ex
}
\uncover
<2->
{
\begin
{
dspPlot
}
[xtype=freq,height=1.4cm,xticks=2,yticks=none,ylabel=
{
$
X
(
e^{j
\omega
}
)
$
}
]
{
-1,1
}{
0,1.2
}
\moocStyle
{
\psset
{
linecolor=blue!80
}
\multido
{
\n
=
\start
+1
}{
\steps
}{
%
\FPupn\f
{
\start
{}
\n
{}
- 0.25 * 1 + copy -0.01 + 2 div 0 trunc 2 mul swap - 1 swap -
}
\cfreq
{
\n
}{
\f
}}}
\pnode
(-1,1.2)
{
a
}
\pnode
(1,1.2)
{
b
}
%\ncline[linewidth=1pt,linecolor=blue!40,linestyle=dashed]{->}{A}{a}
%\ncline[linewidth=1pt,linecolor=blue!40,linestyle=dashed]{->}{B}{b}
\pnode
(-1,0)
{
c
}
\pnode
(1,0)
{
d
}
\end
{
dspPlot
}}
\uncover
<3->
{
\begin
{
dspPlot
}
[sidegap=0,height=1.4cm,xticks=none,yticks=none,ylabel=
{
$
\hat
{X}
(
f
)
$
}
]
{
-5,5
}{
0,1.2
}
\moocStyle
\multido
{
\n
=
\start
+1
}{
\steps
}{
%
\FPupn\f
{
\start
{}
\n
{}
- 0.25 * 1 + copy -0.01 + 2 div 0 trunc 2 mul swap - 1 swap -
}
\cfreq
{
\n
}{
\f
}}
\dspCustomTicks
[axis=x]
{
0 0 1
$
F_s
/
2
$
-1
$
-
F_s
/
2
$
}
\pnode
(-1,1.2)
{
C
}
\pnode
(1,1.2)
{
D
}
\ncline
[linewidth=1pt,linecolor=green!40,linestyle=dashed]
{
->
}{
c
}{
C
}
\ncline
[linewidth=1pt,linecolor=green!40,linestyle=dashed]
{
->
}{
d
}{
D
}
\end
{
dspPlot
}}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\def\interval
#1#2
{
%
\only
<#1>
{
%
\dspCustomTicks
[axis=x]
{
0 0 #2
$
F_s
/
2
$
-#2
$
-
F_s
/
2
$
}
\pnode
(-#2,0)
{
A
}
\pnode
(#2,0)
{
B
}}}
\def\start
{
2
}
\begin
{
frame
}
\frametitle
{
Aliasing of sinusoids: decreasing the sampling frequency
}
\setbeamercovered
{
invisible
}
\begin
{
center
}
\begin
{
figure
}
% original spectrum
\begin
{
dspPlot
}
[sidegap=0,height=1.4cm,xticks=none,yticks=none,ylabel=
{
$
X
(
f
)
$
}
]
{
-5,5
}{
0,1.2
}
\moocStyle
\dspDiracs
{
1 1
}
\dspCustomTicks
[axis=x]
{
1
$
f_
0
$
}
\interval
{
2
}{
2
}
\interval
{
3
}{
1.2
}
\interval
{
4
}{
1
}
\interval
{
5
}{
0.8
}
\interval
{
6
}{
0.5
}
\interval
{
7
}{
0.4
}
\end
{
dspPlot
}
\vspace
{
1ex
}
\begin
{
dspPlot
}
[xtype=freq,height=1.4cm,xticks=2,yticks=none,ylabel=
{
$
X
(
e^{j
\omega
}
)
$
}
]
{
-1,1
}{
0,1.2
}
\moocStyle
{
\psset
{
linecolor=blue!80
}
\cfreq
{
2
}{
0.5
}
\cfreq
{
3
}{
0.8333
}
\cfreq
{
4
}{
1
}
\cfreq
{
5
}{
-0.8
}
\cfreq
{
6
}{
0
}
\cfreq
{
7
}{
0.5
}}
\pnode
(-1,1.2)
{
a
}
\pnode
(1,1.2)
{
b
}
%\ncline[linewidth=1pt,linecolor=blue!40,linestyle=dashed]{->}{A}{a}
%\ncline[linewidth=1pt,linecolor=blue!40,linestyle=dashed]{->}{B}{b}
\pnode
(-1,0)
{
c
}
\pnode
(1,0)
{
d
}
\end
{
dspPlot
}
\begin
{
dspPlot
}
[sidegap=0,height=1.4cm,xticks=none,yticks=none,ylabel=
{
$
\hat
{X}
(
f
)
$
}
]
{
-5,5
}{
0,1.2
}
\moocStyle
\interval
{
2
}{
2
}
\cfreq
{
2
}{
1
}
\interval
{
3
}{
1.2
}
\cfreq
{
3
}{
1
}
\interval
{
4
}{
1
}
\cfreq
{
4
}{
1
}
\interval
{
5
}{
0.8
}
\cfreq
{
5
}{
-0.64
}
\interval
{
6
}{
0.5
}
\cfreq
{
6
}{
0
}
\interval
{
7
}{
0.4
}
\cfreq
{
7
}{
0.2
}
\ncline
[linewidth=1pt,linecolor=green!40,linestyle=dashed]
{
->
}{
c
}{
A
}
\ncline
[linewidth=1pt,linecolor=green!40,linestyle=dashed]
{
->
}{
d
}{
B
}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Sampling a Sinusoid
}
\centering
\begin
{
tabular
}{
lll
}
sampling frequency
&
digital frequency
&
interpolation
\\
\hline
\\
{
\color
{
green
}
$
F_s >
2
f_
0
$
}
&
$
0
<
\omega
_
0
<
\pi
$
&
OK:
$
\hat
{f}_
0
=
f_
0
$
\\
{
\color
{
green
}
$
F_s
=
2
f_
0
$
}
&
$
\omega
_
0
=
\pi
$
&
OK (max frequency
$
\hat
{f}_
0
=
F_s
$
)
\\
{
\color
{
orange
}
$
f_
0
< F_s <
2
f_
0
$
}
&
$
\pi
<
\omega
_
0
<
2
\pi
$
&
negative frequency:
$
\hat
{f}_
0
=
f_
0
-
F_s
$
\\
{
\color
{
red
}
$
F_s < f_
0
$
}
&
$
\omega
_
0
>
2
\pi
$
&
full aliasing:
$
\hat
{f}_
0
=
f_
0
\mod
F_s
$
\end
{
tabular
}
\end
{
frame
}
\def\sampCos
#1
{
%
\FPupn\ntaps
{
#1
\dspXmin
{}
\dspXmax
{}
- * 1 + 0 trunc
}
%
\FPupn\endx
{
\dspXmin
{}
#1
\ntaps
{}
-1 + / +
}
%
\psplot
[plotstyle=dots,dotstyle=*,showpoints=true,
%
dotstyle=*,dotsize=
\dspDotSize
,plotpoints=
\ntaps
,linecolor=darkred]
%
{
\dspXmin
}{
\endx
}{
x 3 mul 360 mul cos
}}
\def\plotSC
#1#2#3
{
%
\only
<#1>
{
%
\begin
{
dspPlot
}
[sidegap=0,xout=true,xlabel=
{
$
F_s
=
#
2
$
Hz
}
]
{
0,#3
}{
-1.2,1.2
}
%
\moocStyle
%
\dspFunc
[linecolor=blue!50]
{
x 3 mul 360 mul cos
}
%
\sampCos
{
#2
}
%
\end
{
dspPlot
}}}
\begin
{
frame
}
\frametitle
{
Aliasing: Sampling a Sinusoid
}
\note
<1>
{
the aliased frequency in the end
\\
is
$
F_
0
\mod
F_s
=
0
.
1
$
Hz
}
\centering
$
x
(
t
)
=
\cos
(
6
\pi
t
)
\qquad
(
f_
0
=
3
\mbox
{Hz}
)
$
\begin
{
figure
}
\only
<1>
{
\begin
{
dspPlot
}
[sidegap=0,xout=true,xlabel=
{}
]
{
0,1
}{
-1.2,1.2
}
\moocStyle
\dspFunc
[linecolor=blue!50]
{
x 3 mul 360 mul cos
}
\end
{
dspPlot
}}
%
\plotSC
{
2
}{
100
}{
1
}
%
\plotSC
{
3
}{
50
}{
1
}
%
\plotSC
{
4
}{
10
}{
1
}
%
\plotSC
{
5
}{
6
}{
1
}
%
\plotSC
{
6
}{
2.9
}{
1
}
%
\plotSC
{
7
}{
2.9
}{
2
}
%
\plotSC
{
8
}{
2.9
}{
4
}
%
\plotSC
{
9
}{
2.9
}{
10
}
%
\end
{
figure
}
\end
{
frame
}
\end
{
document
}
Event Timeline
Log In to Comment