% \frametitle{Success factors for digital communications}
% 2) algorithmic nature of DSP is a perfect match with information theory:
% \begin{itemize}
% \item error correction (CD's and DVD's)
%% \item trellis-coded modulation and Viterbi decoding
% \item entropy coding (JPEG)
% \end{itemize}
%\end{frame}
%
%
%\begin{frame}
% \frametitle{Success factors for digital communications}
% 3) hardware advancement
% \begin{itemize}
% \item general-purpose platforms
% \item miniaturization
% \item power efficiency
% \end{itemize}
%\end{frame}
\note{\vspace{10em} Introduce the notion of physical channel and its many forms. Each channel type will have different specs and will need different strategies}
\begin{frame} \frametitle{Example: the telephone channel}
\begin{itemize}
\item from around 300Hz to around 3500Hz
\item power limited by law to 0.2-0.7V rms
\item noise is rather low: SNR usually 30dB or more
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Example: optical fiber}
\begin{itemize}
\item many types of fiber, eg. multi-mode or single-mode
\item MMF at 850nm typically 500 MHz/km
\item SMF at 1300nm has practically infinite bandwidth
\item power limited by fiber size, a few hundred mW
\end{itemize}
\centering
\includegraphics[height=5cm]{fiber.eps}
\end{frame}
\begin{frame} \frametitle{Channel capacity}
\note<1>{\vspace{10em} information and reliability are fuzzy concepts at this time but they will be clearer as we go along. stress the intuitive part of both}
\centering
maximum amount of information that can be {\em reliably} delivered over the channel \\
(bits per second)
\end{frame}
\begin{frame} \frametitle{About reliability}
\centering
we cannot design a perfect (error-free) communication system because of noise
\vspace{1em}
but
\vspace{1em}
we can design a system with arbitrary small error rate (e.g. $10^{-6}$)
\end{frame}
\begin{frame} \frametitle{Capacity formula for the Gaussian channel}