Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F104916470
fourier.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Mar 13, 08:33
Size
17 KB
Mime Type
text/x-tex
Expires
Sat, Mar 15, 08:33 (2 d)
Engine
blob
Format
Raw Data
Handle
24875788
Attached To
R2653 epfl
fourier.tex
View Options
\documentclass
[aspectratio=169]
{
beamer
}
%\documentclass[aspectratio=169,handout]{beamer}
\def\stylepath
{
../styles
}
\usepackage
{
\stylepath
/com418
}
\begin
{
document
}
\begin
{
frame
}
\frametitle
{
The fundamental idea
}
\begin
{
itemize
}
\item
signals are elements of a vector space
\item
vectors can be expressed as linear combinations of basis elements for any basis
\item
basis elements are the ``atomic particles'' of a signal
\item
the canonical basis is composed of instantaneous time elements
\item
the Fourier basis is composed of
\textit
{
oscillatory
}
elements
\end
{
itemize
}
\end
{
frame
}
\def\timeplot
#1#2
{
\begin
{
dspPlot
}
[width=2.5cm,height=1cm,xticks=1,yticks=1]
{
0,7
}{
0,1.2
}
\moocStyle
\dspSignal
{
x #1 eq
{
1
}
{
0
}
ifelse
}
\dspText
(3,1.4)
{
$
#
2
\times
$
}
\end
{
dspPlot
}
\hspace
{
-2em
}}
\begin
{
frame
}
\frametitle
{
The time domain
}
\begin
{
center
}
\begin
{
dspPlot
}
[width=5cm,height=1.5cm,xticks=1,yticks=5]
{
0,7
}{
0,6
}
\moocStyle
\dspTapsAt
{
0
}{
1 2 3 4 5 4 3 2
}
\end
{
dspPlot
}
\end
{
center
}
\begin
{
tabular
}{
cccc
}
\timeplot
{
0
}{
1
}
&
\timeplot
{
1
}{
2
}
&
\timeplot
{
2
}{
3
}
&
\timeplot
{
3
}{
4
}
\\
\timeplot
{
4
}{
5
}
&
\timeplot
{
5
}{
4
}
&
\timeplot
{
6
}{
3
}
&
\timeplot
{
7
}{
2
}
\end
{
tabular
}
\end
{
frame
}
\def\freqplot
#1#2
{
\begin
{
dspPlot
}
[width=2.5cm,height=1cm,xticks=none,yticks=1]
{
0,7
}{
-1.3,1.3
}
\moocStyle
\dspSignal
{
x 360 8 div #1 mul mul cos
}
\dspFunc
[linewidth=0.3pt,linecolor=blue]
{
x 360 8 div #1 mul mul cos
}
\dspText
(3,1.8)
{
$
#
2
\times
$
}
\end
{
dspPlot
}
\hspace
{
-2em
}}
\begin
{
frame
}
\frametitle
{
The frequency domain
}
\begin
{
center
}
\begin
{
dspPlot
}
[width=5cm,height=1.5cm,xticks=,yticks=5]
{
0,7
}{
0,6
}
\moocStyle
\dspTapsAt
{
0
}{
1 2 3 4 5 4 3 2
}
\end
{
dspPlot
}
\end
{
center
}
\begin
{
tabular
}{
cccc
}
\freqplot
{
0
}{
3
}
&
\freqplot
{
1
}{
-0.8536
}
&
\freqplot
{
2
}{
0
}
&
\freqplot
{
3
}{
-0.1464
}
\\
\freqplot
{
4
}{
0
}
&
\freqplot
{
5
}{
-0.1464
}
&
\freqplot
{
6
}{
0
}
&
\freqplot
{
7
}{
-0.8536
}
\end
{
tabular
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
The Fourier transform
}
\begin
{
center
}
Fourier analysis: express a signal as a combination of periodic oscillations:
\[
\mathbf
{x}
=
\sum
_{k
=
0
}^{N
-
1
} X_k
\mathbf
{w}^{
(
k
)
}
\]
where
$
\{\mathbf
{w}^{
(
k
)
}
\}
$
is the Fourier oscillatory basis.
\vspace
{
1em
}
Fourier transform: an algorithm to perform a change of basis in the space of signals
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
The Discrete Fourier Transform
}
\begin
{
itemize
}
\item
Fourier transform for finite-length signals
\item
the set of
$
N
$
signals in
$
\mathbb
{C}^N
$
\[
w_k
[
n
]
=
e^{j
\frac
{
2
\pi
}{N}nk},
\qquad
n, k
=
0
,
1
,
\ldots
, N
-
1
\]
is an orthogonal basis in
$
\mathbb
{C}^N
$
.
\end
{
itemize
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
DFT in vector notation
}
\centering
Analysis formula:
\[
X_k
=
\langle
\mathbf
{w}^{
(
k
)
},
\mathbf
{x}
\rangle
\]
\vspace
{
2em
}
Synthesis formula:
\[
\mathbf
{x}
=
\frac
{
1
}{N}
\sum
_{k
=
0
}^{N
-
1
} X_k
\mathbf
{w}^{
(
k
)
}
\]
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Change of basis in matrix form
}
\centering
Define
$
W
=
e^{
-
j
\frac
{
2
\pi
}{N}}
$
\vspace
{
2em
}
\[
\mathbf
{X}
=
\begin
{bmatrix}
1
&
1
&
1
&
1
&
\ldots
&
1
\\
1
& W^{
1
} & W^{
2
} & W^{
3
} &
\ldots
& W^{N
-
1
}
\\
1
& W^{
2
} & W^{
4
} & W^{
6
} &
\ldots
& W^{
2
(
N
-
1
)
}
\\
& & &
\ldots
\\
1
& W^{N
-
1
} & W^{
2
(
N
-
1
)
} & W^{
3
(
N
-
1
)
} &
\ldots
& W^{
(
N
-
1
)
^
2
}
\end
{bmatrix}
\mathbf
{x}
\]
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
DFT explicit formulas
}
\centering
Analysis formula:
\[
X
[
k
]
=
\sum
_{n
=
0
}^{N
-
1
} x
[
n
]
\,
e^{
-
j
\frac
{
2
\pi
}{N}nk},
\qquad
k
=
0
,
1
,
\ldots
,N
-
1
\]
$
N
$
-point signal in the
{
\em
frequency domain
}
\vspace
{
2em
}
Synthesis formula:
\[
x
[
n
]
=
\frac
{
1
}{N}
\sum
_{k
=
0
}^{N
-
1
} X
[
k
]
\,
e^{j
\frac
{
2
\pi
}{N}nk},
\qquad
n
=
0
,
1
,
\ldots
,N
-
1
\]
$
N
$
-point signal in the
{
\em
``time'' domain
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
DFT coefficients
}
\begin
{
itemize
}
\item
square magnitude: energy of each sinusoidal component (Parseval!)
\item
phase: relative alignment of each sinusoidal component (determines the shape in time)
\item
frequency resolution equal to time resolution (short segments bring little info)
\item
magnitude symmetric for real-valued inputs
\item
phase mostly irrelevant for steady-state audio
\end
{
itemize
}
\end
{
frame
}
\def\Gen
#1
{
%
\raisebox
{
-1.2em
}{
%
\psset
{
xunit=1em,yunit=1em,linewidth=1.5pt
}
%
\pspicture
(-1,0)(7.1,-3)
%
\rput
[r]
{
0
}
(0,-1.5)
{
$
A_{#
1
}
$
}
\rput
[r]
{
0
}
(0,-2.5)
{
$
\phi
_{#
1
}
$
}
\rput
[l]
(1.9,-1.5)
{
\psframebox
[framesep=.2]
{
\parbox
{
4em
}{
~~
\pscirclebox
{
\Large
$
\mathbf
{
\sim
}
$
}
$
_{~~#
1
}
$
}}}
\psline
[linewidth=0.8pt]
{
->
}
(0.1,-1.5)(1.8,-1.5)
\psline
[linewidth=0.8pt]
{
->
}
(0.1,-2.5)(1.8,-2.5)
\endpspicture
}}
\begin
{
frame
}
\frametitle
{
The inverse DFT as a synthesizer
}
\centering
\begin
{
dspBlocks
}{
1
}{
5
}
\Gen
{
k
}
&
~~
$
A_k e^{j
(
\frac
{
2
\pi
}{N}kn
+
\phi
_k
)
}
$
\BDConnHNext
{
1
}{
1
}
\end
{
dspBlocks
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
DFT synthesis formula
}
\centering
\begin
{
dspBlocks
}{
1.2
}{
0.2
}
\rnode
{
A
}{
\Gen
{
\,
0
}}
&
&
\\
\Gen
{
\,
1
}
&
&
\\
\Gen
{
\,
2
}
&
&
\BDadd
&
$
x
[
n
]
$
\\
\hspace
{
1em
}
$
\ldots
$
&
&
\\
\Gen
{
N-2
}
&
&
\\
\rnode
{
B
}{
\Gen
{
N-1
}}
&
&
\ncline
{
1,1
}{
1,2
}
\ncline
{
->
}{
1,2
}{
3,3
}
\ncline
{
2,1
}{
2,2
}
\ncline
{
->
}{
2,2
}{
3,3
}
\ncline
{
3,1
}{
3,2
}
\ncline
{
->
}{
3,2
}{
3,3
}
\ncline
{
5,1
}{
5,2
}
\ncline
{
->
}{
5,2
}{
3,3
}
\ncline
{
6,1
}{
6,2
}
\ncline
{
->
}{
6,2
}{
3,3
}
\ncline
{
->
}{
3,3
}{
3,4
}
\end
{
dspBlocks
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Interpreting a DFT plot
}
\begin
{
center
}
\begin
{
figure
}
\begin
{
dspPlot
}
[yticks=custom,xticks=custom,xout=true,width=8cm,height=2.5cm,ylabel=
{
$
|X
[
k
]
|
$
}
]
{
0, 63
}{
0, 1
}
\moocStyle
\def\y
{
-0.3
}
\pnode
(0,
\y
)
{
A
}
\pnode
(31,
\y
)
{
B
}
\pnode
(63,
\y
)
{
C
}
\pnode
(8,
\y
)
{
A1
}
\pnode
(23,
\y
)
{
B1
}
\pnode
(40,
\y
)
{
B2
}
\pnode
(55,
\y
)
{
C1
}
\def\yu
{
1.1
}
\pnode
(0,
\yu
)
{
Au
}
\pnode
(31,
\yu
)
{
Bu
}
\pnode
(63,
\yu
)
{
Cu
}
\dspTaps
{
0 .5
}
\dspSignal
[xmin=1]
{
x 180 mul 16 div sin x 180 mul 64 div sin div abs 8 div
}
\dspCustomTicks
[axis=x]
{
0 0 32
$
N
/
2
$
63
$
N
-
1
$
}
\end
{
dspPlot
}
\psset
{
braceWidthInner=3pt,braceWidthOuter=3pt,braceWidth=1pt
}
{
\psbrace
[linecolor=blue,ref=C,nodesepA=-8ex,nodesepB=-2ex,rot=-90]
(Bu)(Au)
{
frequencies
$
<
\pi
$
(counterclockwise)
}}
{
\psbrace
[linecolor=blue,ref=C,nodesepA=5ex,nodesepB=-2ex,rot=-90]
(Cu)(Bu)
{
frequencies
$
>
\pi
$
(clockwise)
}}
{
\psbrace
[linecolor=green,ref=C,nodesep=2ex,rot=90]
(A)(A1)
{
low frequencies (slow)
}
\psbrace
[linecolor=green,ref=C,nodesep=2ex,rot=90]
(C1)(C)
{
low frequencies (slow)
}}
{
\psbrace
[linecolor=red,ref=C,nodesep=2ex,rot=90,braceWidthOuter=23pt]
(B1)(B2)
{
high frequencies (fast)
}}
\end
{
figure
}
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Labeling the frequency axis
}
If we know the ``clock'' of the system
$
T_s
$
(or its frequency
$
F_s
$
)
\begin
{
itemize
}
\item
fastest (positive) frequency is
$
\omega
=
\pi
$
\item
sinusoid at
$
\omega
=
\pi
$
needs two samples to do a full revolution
\item
time between samples:
$
T_s
=
1
/
F_s
$
seconds
\item
real-world period for fastest sinusoid:
$
2
T_s
$
seconds
\item
real-world frequency for fastest sinusoid:
$
F_s
/
2
$
Hz
\end
{
itemize
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Example: train whistle
}
\begin
{
center
}
\includegraphics
[height=60mm]
{
train.eps
}
\movie
[inlinesound]
{
\fbox
{
\small
{
Play
}}}{
train.wav
}
\end
{
center
}
\end
{
frame
}
\def\dftpeak
#1#2
{
%
\pscircle
[linecolor=green,linewidth=0.5pt]
(#1)
{
5pt
}
\uput
{
1em
}
[0](#1)
{
#2
}}
\begin
{
frame
}
\frametitle
{
Example: train whistle
}
\centering
32768 samples (the ``clock'' of the system
$
F_s
=
8000
$
Hz)
\begin
{
figure
}
\begin
{
dspPlot
}
[xticks=custom,yticks=none,sidegap=0]
{
0, 1638
}{
0, 1.2
}
\moocStyle
\dspFuncFile
{
trainDFT.txt
}
\dspCustomTicks
[axis=x]
{
0 0 1638 16384
}
\only
<2>
{
%
\dftpeak
{
198,0.79
}{
$
k
=
2073
$
}
\dftpeak
{
229,1
}{
$
k
=
2400
$
}
\dftpeak
{
292,0.56
}{
$
k
=
3061
$
}}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Example: train whistle
}
\centering
the ``clock'' of the system
$
F_s
=
8000
$
Hz
\begin
{
figure
}
\begin
{
dspPlot
}
[xticks=custom,yticks=none,sidegap=0]
{
0, 1638
}{
0, 1.2
}
\moocStyle
\dspFuncFile
{
trainDFT.txt
}
\dspCustomTicks
[axis=x]
{
0 0 1638 4KHz
}
\dftpeak
{
198,0.79
}{
506Hz
}
\dftpeak
{
229,1
}{
585Hz
}
\dftpeak
{
292,0.56
}{
747Hz
}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Example: train whistle
}
if we look up the frequencies:
\begin
{
center
}
\includegraphics
[height=30mm]
{
bminor.eps
}
B minor chord
\end
{
center
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
The fundamental tradeoff
}
\begin
{
itemize
}
\item
time representation obfuscates frequency
\item
frequency representation obfuscates time
\end
{
itemize
}
\vspace
{
2em
}
\begin
{
figure
}
\begin
{
dspPlot
}
[height=2.4cm,xticks=none,yticks=none,sidegap=0]
{
0, 1638
}{
0, 1.2
}
\moocStyle
\dspFuncFile
{
trainDFT.txt
}
\end
{
dspPlot
}
\end
{
figure
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Short-Time Fourier Transform
}
Idea:
\begin
{
itemize
}
\item
take small signal pieces of length
$
L
$
\item
look at the DFT of each piece:
\[
X
[
m; k
]
=
\sum
_{n
=
0
}^{L
-
1
}x
[
m
+
n
]
\,
e^{
-
j
\frac
{
2
\pi
}{L}nk}
\]
\end
{
itemize
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Wideband vs Narrowband
}
Long window: narrowband spectrogram
\begin
{
itemize
}
\item
long window
$
\Rightarrow
$
more DFT points
$
\Rightarrow
$
more frequency resolution
\item
long window
$
\Rightarrow
$
more ``things can happen''
$
\Rightarrow
$
less precision in time
\end
{
itemize
}
\vspace
{
2em
}
Short window: wideband spectrogram
\begin
{
itemize
}
\item
short window
$
\Rightarrow
$
many time slices
$
\Rightarrow
$
precise location of transitions
\item
short window
$
\Rightarrow
$
fewer DFT points
$
\Rightarrow
$
poor frequency resolution
\end
{
itemize
}
\end
{
frame
}
\def\speech
#1#2
{
\only
<#1>
{
\dspImageFile
{
speechgram#2.eps
}}}
\begin
{
frame
}
\frametitle
{
Speech analysis
}
\begin
{
center
}
\only
<1>
{
8ms analysis window (125Hz frequency bins)
}
\only
<2>
{
32ms analysis window (31Hz frequency bins)
}
, 4ms shifts
\begin
{
dspPlot
}
[height=1cm,xticks=none,xout=true,yticks=none,sidegap=0]
{
0, 2024
}{
-.6, .6
}
\moocStyle
\dspFuncFile
{
speech.txt
}
\end
{
dspPlot
}
\begin
{
dspCP
}
[width=
\dspWidth
,xticks=custom,yticks=custom]
{
0,2
}{
0,5
}
%
\speech
{
1
}{
64
}
\speech
{
2
}{
256
}
\dspCustomTicks
[axis=x]
{
0 0 2 2.5s
}
\dspCustomTicks
[axis=y]
{
0 0 5 4KHz
}
\end
{
dspCP
}
\end
{
center
}
\end
{
frame
}
\def\tf
{
180 mul dup 1.1 mul cos 1 add 2 div exch 5 mul sin 0.1 mul add 0.1 add
}
\def\td
{
cvi 16 mod 16 div
\tf
}
\def\tr
{
cvi 16 mod 15 exch sub 16 div
\tf
}
\def\twin
{
.5 sub abs .5 div 1 exch sub 0.06 add
}
\def\tw
{
cvi 16 mod 16 div
\twin
}
\def\tdw
{
cvi 16 mod 16 div dup
\tf
exch
\twin
mul
}
\begin
{
frame
}
\frametitle
{
Windowing
}
\centering
the DFT is inherently
$
N
$
-periodic and assumes the signal is
$
N
$
-periodic
\vspace
{
1em
}
\begin
{
columns
}
\begin
{
column
}{
0.3
\textwidth
}
\centering
the signal to transform
\begin
{
dspPlot
}
[yticks=1,xticks=5,width=0.7
\textwidth
,height=3cm]
{
0,16
}{
0,1.5
}
\dspSignal
[xmin=0,xmax=15,linecolor=darkred]
{
x
\td
}
\end
{
dspPlot
}
\end
{
column
}
\begin
{
column
}{
0.7
\textwidth
}
\centering
what the DFT sees
\begin
{
dspPlot
}
[yticks=1,xticks=16,width=0.7
\textwidth
,height=3cm]
{
-20,40
}{
0,1.5
}
\dspSignal
[xmin=0,xmax=15,linecolor=darkred]
{
x
\td
}
\dspSignal
[xmin=16,linecolor=darkred!40]
{
x
\td
}
\dspSignal
[xmax=-1,linecolor=darkred!40]
{
x 31 add
\td
}
\end
{
dspPlot
}
\end
{
column
}
\end
{
columns
}
notice the discontinuity jumps!
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Windowing
}
\centering
to avoid spurious high-frequency content use a tapering window
\\
(triangular, Hamming, Hanning, ...)
\vspace
{
1em
}
\begin
{
columns
}
\begin
{
column
}{
0.3
\textwidth
}
\centering
\begin
{
dspPlot
}
[yticks=1,width=0.7
\textwidth
,height=3cm]
{
0,16
}{
0,1.5
}
\dspSignal
[xmin=0,xmax=15,linecolor=lightgray]
{
x
\td
}
\dspSignal
[xmin=0,xmax=15,linecolor=green!40]
{
x
\tw
}
\dspSignal
[xmin=0,xmax=15,linecolor=darkred]
{
x
\tdw
}
\end
{
dspPlot
}
\end
{
column
}
\begin
{
column
}{
0.7
\textwidth
}
\centering
\begin
{
dspPlot
}
[yticks=1,xticks=16,width=0.7
\textwidth
,height=3cm]
{
-20,40
}{
0,1.5
}
\dspSignal
[xmin=0,xmax=15,linecolor=darkred]
{
x
\tdw
}
\dspSignal
[xmin=16,linecolor=darkred!40]
{
x
\tdw
}
\dspSignal
[xmax=-1,linecolor=darkred!40]
{
x 31 add
\tdw
}
\end
{
dspPlot
}
\end
{
column
}
\end
{
columns
}
\vspace
{
1em
}
equivalent to lowpass-filtering the spectrum
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Other Fourier transforms: the DTFT
}
\begin
{
itemize
}
\item
frequency representation for signals in
$
\ell
_
2
(
\mathbb
{Z}
)
$
\item
spectrum
$
2
\pi
$
-periodic, in
$
L_
2
([-
\pi
,
\pi
])
$
\item
squared magnitude shows the energy distribution in frequency
\end
{
itemize
}
\vspace
{
1em
}
\begin
{
columns
}
\begin
{
column
}{
0.5
\textwidth
}
\begin
{
align*
}
X(e
^{
j
\omega
}
)
&
=
\sum
_{
n=-
\infty
}^{
\infty
}
x[n]
\,
e
^{
-j
\omega
n
}
\\
\\
x[n]
&
=
\frac
{
1
}{
2
\pi
}
\int
_{
-
\pi
}^{
\pi
}
X(e
^{
j
\omega
}
)
\,
e
^{
j
\omega
n
}
\,
d
\omega
\end
{
align*
}
\end
{
column
}
\begin
{
column
}{
0.5
\textwidth
}
\centering
\def\a
{
0.9
}
$
x
[
n
]
=
\alpha
^n
\,
u
[
n
]
,
\quad
|
\alpha
| <
1
$
\begin
{
dspPlot
}
[height=1cm,width=5cm]
{
-3,25
}{
0, 1.2
}
\moocStyle
\dspSignal
{
x 0 ge
{
\a
x exp
}
{
0
}
ifelse
}
\end
{
dspPlot
}
\begin
{
dspPlot
}
[xtype=freq,yticks=5,height=1cm,width=5cm]
{
-1,1
}{
0, 11
}
\moocStyle
\def\a
{
0.9
}
\dspFunc
{
x 180 mul cos
\a
-2 mul mul
\a
\a
mul 1 add add sqrt 1 exch div
}
\end
{
dspPlot
}
\end
{
column
}
\end
{
columns
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Other Fourier transforms: the PSD
}
\begin
{
itemize
}
\item
frequency representation for WSS random processes
\item
DTFT of the autocorrelation; flat for white noise
\item
shows the
\textit
{
power
}
distribution in frequency
\end
{
itemize
}
\vspace
{
1em
}
\begin
{
columns
}
\begin
{
column
}{
0.5
\textwidth
}
\begin
{
align*
}
r
_
x[n]
&
=
\expt
{
x[m]x[m+n]
}
\\
\\
P
_
x(e
^{
j
\omega
}
)
&
=
\sum
_{
n=-
\infty
}^{
\infty
}
r
_
x[n]
\,
e
^{
-j
\omega
n
}
\end
{
align*
}
\end
{
column
}
\begin
{
column
}{
0.5
\textwidth
}
\centering
\def\a
{
0.9
}
iid process with zero mean and unit variance
\begin
{
dspPlot
}
[height=1cm,width=5cm,xout=true]
{
-20,20
}{
-1.2, 1.2
}
\moocStyle
\dspSignal
{
rand 2147483647 div 0.5 sub 2 mul
}
\end
{
dspPlot
}
\begin
{
dspPlot
}
[xtype=freq,height=1cm,width=5cm]
{
-1,1
}{
0, 1.5
}
\moocStyle
\def\a
{
0.9
}
\dspFunc
{
1
}
\end
{
dspPlot
}
\end
{
column
}
\end
{
columns
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Other Fourier transforms: the Fourier Transform
}
\begin
{
itemize
}
\item
frequency representation for continuous-time signals
\item
non-periodic; compact support for bandlimited signals
\item
squared magnitude shows the energy distribution in frequency
\end
{
itemize
}
\vspace
{
1em
}
\begin
{
columns
}
\begin
{
column
}{
0.5
\textwidth
}
\begin
{
align*
}
X(f)
&
=
\int
_{
-
\infty
}^{
\infty
}
x(t) e
^{
-j2
\pi
f t
}
dt
\\
\\
x(t)
&
=
\int
_{
-
\infty
}^{
\infty
}
X(f) e
^{
j2
\pi
f t
}
df
\end
{
align*
}
\end
{
column
}
\begin
{
column
}{
0.5
\textwidth
}
\centering
\def\a
{
0.9
}
the rect-sinc pair
\begin
{
dspPlot
}
[height=1cm,width=5cm,xticks=custom,sidegap=0,xout=true]
{
-8,8
}{
-0.3,1.2
}
\moocStyle
\dspFunc
{
x
\dspSinc
{
0
}{
1
}}
\dspCustomTicks
[axis=x]
{
0 0 1
$
T_s
$
-1
$
-
T_s
$
2
$
2
T_s
$
3
$
3
T_s
$
4
$
4
T_s
$
}
\end
{
dspPlot
}
\begin
{
dspPlot
}
[height=1cm,width=5cm,xtype=freq,xticks=custom,yticks=custom]
{
-1.5,1.5
}{
0,1.4
}
\moocStyle
\dspFunc
{
x
\dspRect
{
0
}{
1
}}
\dspCustomTicks
[axis=x]
{
0 0 -0.5
$
-
F_s
/
2
$
0.5
$
F_s
/
2
$
}
\dspCustomTicks
[axis=y]
{
1
$
1
/
F_s
$
}
\end
{
dspPlot
}
\end
{
column
}
\end
{
columns
}
\end
{
frame
}
\begin
{
frame
}
\frametitle
{
Other Fourier transforms: the Fourier Series
}
\begin
{
itemize
}
\item
frequency representation for continuous-time
$
P
$
-periodic signals
\item
countable set of coefficients; highlights the harmonic structure of the signal
\item
shows the
\textit
{
energy
}
distribution over frequency lines
\end
{
itemize
}
\vspace
{
1em
}
\begin
{
columns
}
\begin
{
column
}{
0.5
\textwidth
}
\begin
{
align*
}
X[n]
&
=
\frac
{
1
}{
P
}
\int
_{
P
}
x(t) e
^{
-j(2
\pi
/P)nt
}
dt
\\
\\
x(t)
&
=
\sum
_{
n=-
\infty
}^{
\infty
}
X[n]
\,
e
^{
-j(2
\pi
/P)nt
}
\end
{
align*
}
\end
{
column
}
\begin
{
column
}{
0.5
\textwidth
}
\centering
\def\a
{
0.9
}
sawtooth signal
\begin
{
dspPlot
}
[height=1cm,width=5cm,xticks=custom,sidegap=0,xout=true]
{
-8,8
}{
-1.2,1.2
}
\moocStyle
\dspFunc
{
x 100 add 3 div abs dup cvi sub 0.5 sub 2 mul
}
% 4 mod 4 div}
\dspCustomTicks
[axis=x]
{
-1 0 2
$
P
$
}
\end
{
dspPlot
}
\begin
{
dspPlot
}
[height=1cm,width=5cm,yticks=none]
{
-10,10
}{
0, 0.4
}
\moocStyle
\dspSignal
{
x 0 eq
{
0
}
{
1 3.14 x abs mul div
}
ifelse
}
\end
{
dspPlot
}
\end
{
column
}
\end
{
columns
}
\end
{
frame
}
\end
{
document
}
Event Timeline
Log In to Comment