Page MenuHomec4science

dynamics.F
No OneTemporary

File Metadata

Created
Thu, Jul 10, 01:56

dynamics.F

C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.178 2016/11/28 23:05:05 jmc Exp $
C $Name: $
#include "PACKAGES_CONFIG.h"
#include "CPP_OPTIONS.h"
#ifdef ALLOW_AUTODIFF
# include "AUTODIFF_OPTIONS.h"
#endif
#ifdef ALLOW_MOM_COMMON
# include "MOM_COMMON_OPTIONS.h"
#endif
#ifdef ALLOW_OBCS
# include "OBCS_OPTIONS.h"
#endif
#undef DYNAMICS_GUGV_EXCH_CHECK
CBOP
C !ROUTINE: DYNAMICS
C !INTERFACE:
SUBROUTINE DYNAMICS(myTime, myIter, myThid)
C !DESCRIPTION: \bv
C *==========================================================*
C | SUBROUTINE DYNAMICS
C | o Controlling routine for the explicit part of the model
C | dynamics.
C *==========================================================*
C \ev
C !USES:
IMPLICIT NONE
C == Global variables ===
#include "SIZE.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
#include "GRID.h"
#include "DYNVARS.h"
#ifdef ALLOW_MOM_COMMON
# include "MOM_VISC.h"
#endif
#ifdef ALLOW_CD_CODE
# include "CD_CODE_VARS.h"
#endif
#ifdef ALLOW_AUTODIFF
# include "tamc.h"
# include "tamc_keys.h"
# include "FFIELDS.h"
# include "EOS.h"
# ifdef ALLOW_KPP
# include "KPP.h"
# endif
# ifdef ALLOW_PTRACERS
# include "PTRACERS_SIZE.h"
# include "PTRACERS_FIELDS.h"
# endif
# ifdef ALLOW_OBCS
# include "OBCS_PARAMS.h"
# include "OBCS_FIELDS.h"
# ifdef ALLOW_PTRACERS
# include "OBCS_PTRACERS.h"
# endif
# endif
# ifdef ALLOW_MOM_FLUXFORM
# include "MOM_FLUXFORM.h"
# endif
#endif /* ALLOW_AUTODIFF */
C !CALLING SEQUENCE:
C DYNAMICS()
C |
C |-- CALC_EP_FORCING
C |
C |-- CALC_GRAD_PHI_SURF
C |
C |-- CALC_VISCOSITY
C |
C |-- MOM_CALC_3D_STRAIN
C |
C |-- CALC_EDDY_STRESS
C |
C |-- CALC_PHI_HYD
C |
C |-- MOM_FLUXFORM
C |
C |-- MOM_VECINV
C |
C |-- MOM_CALC_SMAG_3D
C |-- MOM_UV_SMAG_3D
C |
C |-- TIMESTEP
C |
C |-- MOM_U_IMPLICIT_R
C |-- MOM_V_IMPLICIT_R
C |
C |-- IMPLDIFF
C |
C |-- OBCS_APPLY_UV
C |
C |-- CALC_GW
C |
C |-- DIAGNOSTICS_FILL
C |-- DEBUG_STATS_RL
C !INPUT/OUTPUT PARAMETERS:
C == Routine arguments ==
C myTime :: Current time in simulation
C myIter :: Current iteration number in simulation
C myThid :: Thread number for this instance of the routine.
_RL myTime
INTEGER myIter
INTEGER myThid
C !FUNCTIONS:
#ifdef ALLOW_DIAGNOSTICS
LOGICAL DIAGNOSTICS_IS_ON
EXTERNAL DIAGNOSTICS_IS_ON
#endif
C !LOCAL VARIABLES:
C == Local variables
C fVer[UV] o fVer: Vertical flux term - note fVer
C is "pipelined" in the vertical
C so we need an fVer for each
C variable.
C phiHydC :: hydrostatic potential anomaly at cell center
C In z coords phiHyd is the hydrostatic potential
C (=pressure/rho0) anomaly
C In p coords phiHyd is the geopotential height anomaly.
C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
C phiSurfY or geopotential (atmos) in X and Y direction
C guDissip :: dissipation tendency (all explicit terms), u component
C gvDissip :: dissipation tendency (all explicit terms), v component
C kappaRU :: vertical viscosity for velocity U-component
C kappaRV :: vertical viscosity for velocity V-component
C iMin, iMax :: Ranges and sub-block indices on which calculations
C jMin, jMax are applied.
C bi, bj :: tile indices
C k :: current level index
C km1, kp1 :: index of level above (k-1) and below (k+1)
C kUp, kDown :: Index for interface above and below. kUp and kDown are
C are switched with k to be the appropriate index into fVerU,V
_RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
_RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
_RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL kappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
_RL kappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
#ifdef ALLOW_SMAG_3D
C str11 :: strain component Vxx @ grid-cell center
C str22 :: strain component Vyy @ grid-cell center
C str33 :: strain component Vzz @ grid-cell center
C str12 :: strain component Vxy @ grid-cell corner
C str13 :: strain component Vxz @ above uVel
C str23 :: strain component Vyz @ above vVel
C viscAh3d_00 :: Smagorinsky viscosity @ grid-cell center
C viscAh3d_12 :: Smagorinsky viscosity @ grid-cell corner
C viscAh3d_13 :: Smagorinsky viscosity @ above uVel
C viscAh3d_23 :: Smagorinsky viscosity @ above vVel
C addDissU :: zonal momentum tendency from 3-D Smag. viscosity
C addDissV :: merid momentum tendency from 3-D Smag. viscosity
_RL str11(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
_RL str22(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
_RL str33(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
_RL str12(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
_RL str13(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
_RL str23(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
_RL viscAh3d_00(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
_RL viscAh3d_12(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
_RL viscAh3d_13(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
_RL viscAh3d_23(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
_RL addDissU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL addDissV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
#elif ( defined ALLOW_NONHYDROSTATIC )
_RL str13(1), str23(1), str33(1)
_RL viscAh3d_00(1), viscAh3d_13(1), viscAh3d_23(1)
#endif
INTEGER bi, bj
INTEGER i, j
INTEGER k, km1, kp1, kUp, kDown
INTEGER iMin, iMax
INTEGER jMin, jMax
PARAMETER( iMin = 0 , iMax = sNx+1 )
PARAMETER( jMin = 0 , jMax = sNy+1 )
#ifdef ALLOW_DIAGNOSTICS
LOGICAL dPhiHydDiagIsOn
_RL tmpFac
#endif /* ALLOW_DIAGNOSTICS */
C--- The algorithm...
C
C "Correction Step"
C =================
C Here we update the horizontal velocities with the surface
C pressure such that the resulting flow is either consistent
C with the free-surface evolution or the rigid-lid:
C U[n] = U* + dt x d/dx P
C V[n] = V* + dt x d/dy P
C
C "Calculation of Gs"
C ===================
C This is where all the accelerations and tendencies (ie.
C physics, parameterizations etc...) are calculated
C rho = rho ( theta[n], salt[n] )
C b = b(rho, theta)
C K31 = K31 ( rho )
C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
C
C "Time-stepping" or "Prediction"
C ================================
C The models variables are stepped forward with the appropriate
C time-stepping scheme (currently we use Adams-Bashforth II)
C - For momentum, the result is always *only* a "prediction"
C in that the flow may be divergent and will be "corrected"
C later with a surface pressure gradient.
C - Normally for tracers the result is the new field at time
C level [n+1} *BUT* in the case of implicit diffusion the result
C is also *only* a prediction.
C - We denote "predictors" with an asterisk (*).
C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C With implicit diffusion:
C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C (1 + dt * K * d_zz) theta[n] = theta*
C (1 + dt * K * d_zz) salt[n] = salt*
C---
CEOP
#ifdef ALLOW_DEBUG
IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid )
#endif
#ifdef ALLOW_DIAGNOSTICS
dPhiHydDiagIsOn = .FALSE.
IF ( useDiagnostics )
& dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
& .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
#endif
C-- Call to routine for calculation of Eliassen-Palm-flux-forced
C U-tendency, if desired:
#ifdef INCLUDE_EP_FORCING_CODE
CALL CALC_EP_FORCING(myThid)
#endif
#ifdef ALLOW_AUTODIFF_MONITOR_DIAG
CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid )
#endif
#ifdef ALLOW_AUTODIFF_TAMC
C-- HPF directive to help TAMC
CHPF$ INDEPENDENT
#endif /* ALLOW_AUTODIFF_TAMC */
DO bj=myByLo(myThid),myByHi(myThid)
#ifdef ALLOW_AUTODIFF_TAMC
C-- HPF directive to help TAMC
CHPF$ INDEPENDENT, NEW (fVerU,fVerV
CHPF$& ,phiHydF
CHPF$& ,kappaRU,kappaRV
CHPF$& )
#endif /* ALLOW_AUTODIFF_TAMC */
DO bi=myBxLo(myThid),myBxHi(myThid)
#ifdef ALLOW_AUTODIFF_TAMC
act1 = bi - myBxLo(myThid)
max1 = myBxHi(myThid) - myBxLo(myThid) + 1
act2 = bj - myByLo(myThid)
max2 = myByHi(myThid) - myByLo(myThid) + 1
act3 = myThid - 1
max3 = nTx*nTy
act4 = ikey_dynamics - 1
idynkey = (act1 + 1) + act2*max1
& + act3*max1*max2
& + act4*max1*max2*max3
#endif /* ALLOW_AUTODIFF_TAMC */
C-- Set up work arrays with valid (i.e. not NaN) values
C These initial values do not alter the numerical results. They
C just ensure that all memory references are to valid floating
C point numbers. This prevents spurious hardware signals due to
C uninitialised but inert locations.
#ifdef ALLOW_AUTODIFF
DO k=1,Nr
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
c-- need some re-initialisation here to break dependencies
gU(i,j,k,bi,bj) = 0. _d 0
gV(i,j,k,bi,bj) = 0. _d 0
ENDDO
ENDDO
ENDDO
#endif /* ALLOW_AUTODIFF */
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
fVerU (i,j,1) = 0. _d 0
fVerU (i,j,2) = 0. _d 0
fVerV (i,j,1) = 0. _d 0
fVerV (i,j,2) = 0. _d 0
phiHydF (i,j) = 0. _d 0
phiHydC (i,j) = 0. _d 0
#ifndef INCLUDE_PHIHYD_CALCULATION_CODE
dPhiHydX(i,j) = 0. _d 0
dPhiHydY(i,j) = 0. _d 0
#endif
phiSurfX(i,j) = 0. _d 0
phiSurfY(i,j) = 0. _d 0
guDissip(i,j) = 0. _d 0
gvDissip(i,j) = 0. _d 0
#ifdef ALLOW_AUTODIFF
phiHydLow(i,j,bi,bj) = 0. _d 0
# if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
# ifndef DISABLE_RSTAR_CODE
dWtransC(i,j,bi,bj) = 0. _d 0
dWtransU(i,j,bi,bj) = 0. _d 0
dWtransV(i,j,bi,bj) = 0. _d 0
# endif
# endif
#endif /* ALLOW_AUTODIFF */
ENDDO
ENDDO
C-- Start computation of dynamics
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE wVel (:,:,:,bi,bj) =
CADJ & comlev1_bibj, key=idynkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
C-- Explicit part of the Surface Potential Gradient (add in TIMESTEP)
C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
IF (implicSurfPress.NE.1.) THEN
CALL CALC_GRAD_PHI_SURF(
I bi,bj,iMin,iMax,jMin,jMax,
I etaN,
O phiSurfX,phiSurfY,
I myThid )
ENDIF
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
#ifdef ALLOW_KPP
CADJ STORE KPPviscAz (:,:,:,bi,bj)
CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
#endif /* ALLOW_KPP */
#endif /* ALLOW_AUTODIFF_TAMC */
#ifndef ALLOW_AUTODIFF
IF ( .NOT.momViscosity ) THEN
#endif
DO k=1,Nr+1
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
kappaRU(i,j,k) = 0. _d 0
kappaRV(i,j,k) = 0. _d 0
ENDDO
ENDDO
ENDDO
#ifndef ALLOW_AUTODIFF
ENDIF
#endif
#ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
C-- Calculate the total vertical viscosity
IF ( momViscosity ) THEN
CALL CALC_VISCOSITY(
I bi,bj, iMin,iMax,jMin,jMax,
O kappaRU, kappaRV,
I myThid )
ENDIF
#endif /* INCLUDE_CALC_DIFFUSIVITY_CALL */
#ifdef ALLOW_SMAG_3D
IF ( useSmag3D ) THEN
CALL MOM_CALC_3D_STRAIN(
O str11, str22, str33, str12, str13, str23,
I bi, bj, myThid )
ENDIF
#endif /* ALLOW_SMAG_3D */
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE kappaRU(:,:,:)
CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
CADJ STORE kappaRV(:,:,:)
CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
#ifdef ALLOW_OBCS
C-- For Stevens boundary conditions velocities need to be extrapolated
C (copied) to a narrow strip outside the domain
IF ( useOBCS ) THEN
CALL OBCS_COPY_UV_N(
U uVel(1-OLx,1-OLy,1,bi,bj),
U vVel(1-OLx,1-OLy,1,bi,bj),
I Nr, bi, bj, myThid )
ENDIF
#endif /* ALLOW_OBCS */
#ifdef ALLOW_EDDYPSI
CALL CALC_EDDY_STRESS(bi,bj,myThid)
#endif
C-- Start of dynamics loop
DO k=1,Nr
C-- km1 Points to level above k (=k-1)
C-- kup Cycles through 1,2 to point to layer above
C-- kDown Cycles through 2,1 to point to current layer
km1 = MAX(1,k-1)
kp1 = MIN(k+1,Nr)
kup = 1+MOD(k+1,2)
kDown= 1+MOD(k,2)
#ifdef ALLOW_AUTODIFF_TAMC
kkey = (idynkey-1)*Nr + k
CADJ STORE totPhiHyd (:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE phiHydLow (:,:,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE theta (:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE salt (:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
# ifdef NONLIN_FRSURF
cph-test
CADJ STORE phiHydC (:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE phiHydF (:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gU(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gV(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
# ifndef ALLOW_ADAMSBASHFORTH_3
CADJ STORE guNm1(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gvNm1(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
# else
CADJ STORE guNm(:,:,k,bi,bj,1)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE guNm(:,:,k,bi,bj,2)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gvNm(:,:,k,bi,bj,1)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gvNm(:,:,k,bi,bj,2)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
# endif
# ifdef ALLOW_CD_CODE
CADJ STORE uNM1(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE vNM1(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE uVelD(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE vVelD(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
# endif
# endif /* NONLIN_FRSURF */
#endif /* ALLOW_AUTODIFF_TAMC */
C-- Integrate hydrostatic balance for phiHyd with BC of phiHyd(z=0)=0
CALL CALC_PHI_HYD(
I bi,bj,iMin,iMax,jMin,jMax,k,
I theta, salt,
U phiHydF,
O phiHydC, dPhiHydX, dPhiHydY,
I myTime, myIter, myThid )
#ifdef ALLOW_DIAGNOSTICS
IF ( dPhiHydDiagIsOn ) THEN
tmpFac = -1. _d 0
CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
& 'Um_dPHdx', k, 1, 2, bi, bj, myThid )
CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
& 'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
ENDIF
#endif /* ALLOW_DIAGNOSTICS */
C-- Calculate accelerations in the momentum equations (gU, gV, ...)
C and step forward storing the result in gU, gV, etc...
IF ( momStepping ) THEN
#ifdef ALLOW_AUTODIFF
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
guDissip(i,j) = 0. _d 0
gvDissip(i,j) = 0. _d 0
ENDDO
ENDDO
#endif /* ALLOW_AUTODIFF */
#ifdef ALLOW_AUTODIFF_TAMC
# if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
# ifndef DISABLE_RSTAR_CODE
CADJ STORE dWtransC(:,:,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE dWtransU(:,:,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE dWtransV(:,:,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
# endif
# endif /* NONLIN_FRSURF and ALLOW_MOM_FLUXFORM */
# if (defined NONLIN_FRSURF) || (defined ALLOW_DEPTH_CONTROL)
CADJ STORE fVerU(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE fVerV(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
# endif
#endif /* ALLOW_AUTODIFF_TAMC */
IF (.NOT. vectorInvariantMomentum) THEN
#ifdef ALLOW_MOM_FLUXFORM
CALL MOM_FLUXFORM(
I bi,bj,k,iMin,iMax,jMin,jMax,
I kappaRU, kappaRV,
U fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp),
O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
O guDissip, gvDissip,
I myTime, myIter, myThid)
#endif
ELSE
#ifdef ALLOW_MOM_VECINV
CALL MOM_VECINV(
I bi,bj,k,iMin,iMax,jMin,jMax,
I kappaRU, kappaRV,
I fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp),
O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
O guDissip, gvDissip,
I myTime, myIter, myThid)
#endif
ENDIF
#ifdef ALLOW_SMAG_3D
IF ( useSmag3D ) THEN
CALL MOM_CALC_SMAG_3D(
I str11, str22, str33, str12, str13, str23,
O viscAh3d_00, viscAh3d_12, viscAh3d_13, viscAh3d_23,
I smag3D_hLsC, smag3D_hLsW, smag3D_hLsS, smag3D_hLsZ,
I k, bi, bj, myThid )
CALL MOM_UV_SMAG_3D(
I str11, str22, str12, str13, str23,
I viscAh3d_00, viscAh3d_12, viscAh3d_13, viscAh3d_23,
O addDissU, addDissV,
I iMin,iMax,jMin,jMax, k, bi, bj, myThid )
DO j= jMin,jMax
DO i= iMin,iMax
guDissip(i,j) = guDissip(i,j) + addDissU(i,j)
gvDissip(i,j) = gvDissip(i,j) + addDissV(i,j)
ENDDO
ENDDO
ENDIF
#endif /* ALLOW_SMAG_3D */
CALL TIMESTEP(
I bi,bj,iMin,iMax,jMin,jMax,k,
I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
I guDissip, gvDissip,
I myTime, myIter, myThid)
ENDIF
C-- end of dynamics k loop (1:Nr)
ENDDO
C-- Implicit Vertical advection & viscosity
#if (defined (INCLUDE_IMPLVERTADV_CODE) && \
defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF))
IF ( momImplVertAdv .OR. implicitViscosity
& .OR. selectImplicitDrag.GE.1 ) THEN
C to recover older (prior to 2016-10-05) results:
c IF ( momImplVertAdv ) THEN
CALL MOM_U_IMPLICIT_R( kappaRU,
I bi, bj, myTime, myIter, myThid )
CALL MOM_V_IMPLICIT_R( kappaRV,
I bi, bj, myTime, myIter, myThid )
ELSEIF ( implicitViscosity ) THEN
#else /* INCLUDE_IMPLVERTADV_CODE */
IF ( implicitViscosity ) THEN
#endif /* INCLUDE_IMPLVERTADV_CODE */
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
CALL IMPLDIFF(
I bi, bj, iMin, iMax, jMin, jMax,
I -1, kappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
U gU(1-OLx,1-OLy,1,bi,bj),
I myThid )
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
CALL IMPLDIFF(
I bi, bj, iMin, iMax, jMin, jMax,
I -2, kappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
U gV(1-OLx,1-OLy,1,bi,bj),
I myThid )
ENDIF
#ifdef ALLOW_OBCS
C-- Apply open boundary conditions
IF ( useOBCS ) THEN
C-- but first save intermediate velocities to be used in the
C next time step for the Stevens boundary conditions
CALL OBCS_SAVE_UV_N(
I bi, bj, iMin, iMax, jMin, jMax, 0,
I gU, gV, myThid )
CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid )
ENDIF
#endif /* ALLOW_OBCS */
#ifdef ALLOW_CD_CODE
IF (implicitViscosity.AND.useCDscheme) THEN
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
CALL IMPLDIFF(
I bi, bj, iMin, iMax, jMin, jMax,
I 0, kappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
U vVelD(1-OLx,1-OLy,1,bi,bj),
I myThid )
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
CALL IMPLDIFF(
I bi, bj, iMin, iMax, jMin, jMax,
I 0, kappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
U uVelD(1-OLx,1-OLy,1,bi,bj),
I myThid )
ENDIF
#endif /* ALLOW_CD_CODE */
C-- End implicit Vertical advection & viscosity
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
#ifdef ALLOW_NONHYDROSTATIC
C-- Step forward W field in N-H algorithm
IF ( nonHydrostatic ) THEN
#ifdef ALLOW_DEBUG
IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid )
#endif
CALL TIMER_START('CALC_GW [DYNAMICS]',myThid)
CALL CALC_GW(
I bi,bj, kappaRU, kappaRV,
I str13, str23, str33,
I viscAh3d_00, viscAh3d_13, viscAh3d_23,
I myTime, myIter, myThid )
ENDIF
IF ( nonHydrostatic.OR.implicitIntGravWave )
& CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
IF ( nonHydrostatic )
& CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid)
#endif
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
C- end of bi,bj loops
ENDDO
ENDDO
#ifdef ALLOW_OBCS
IF (useOBCS) THEN
CALL OBCS_EXCHANGES( myThid )
ENDIF
#endif
Cml(
C In order to compare the variance of phiHydLow of a p/z-coordinate
C run with etaH of a z/p-coordinate run the drift of phiHydLow
C has to be removed by something like the following subroutine:
C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
C & 'phiHydLow', myTime, myThid )
Cml)
#ifdef ALLOW_DIAGNOSTICS
IF ( useDiagnostics ) THEN
CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
tmpFac = 1. _d 0
CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
& 'PHIHYDSQ',0,Nr,0,1,1,myThid)
CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
& 'PHIBOTSQ',0, 1,0,1,1,myThid)
ENDIF
#endif /* ALLOW_DIAGNOSTICS */
#ifdef ALLOW_DEBUG
IF ( debugLevel .GE. debLevD ) THEN
CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
#ifndef ALLOW_ADAMSBASHFORTH_3
CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
#endif
ENDIF
#endif
#ifdef DYNAMICS_GUGV_EXCH_CHECK
C- jmc: For safety checking only: This Exchange here should not change
C the solution. If solution changes, it means something is wrong,
C but it does not mean that it is less wrong with this exchange.
IF ( debugLevel .GE. debLevE ) THEN
CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
ENDIF
#endif
#ifdef ALLOW_DEBUG
IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
#endif
RETURN
END

Event Timeline