Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91382681
BDstat.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 10, 13:51
Size
4 KB
Mime Type
text/x-python
Expires
Tue, Nov 12, 13:51 (2 d)
Engine
blob
Format
Raw Data
Handle
22254565
Attached To
R3127 blackdynamite
BDstat.py
View Options
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# -*- py-which-shell: "python"; -*-
from
__future__
import
print_function
__all__
=
[
"BDStat"
]
import
numpy
as
np
import
job
import
copy
class
BDStat
(
object
):
"""
"""
def
average
(
self
,
quantity
,
run_list
,
entries_to_average
):
result
=
dict
()
run_info
=
dict
()
cpt
=
dict
()
run_counter
=
0
nb_runs
=
len
(
run_list
)
entries_to_average
.
append
(
"id"
)
entries_to_consider
=
[]
if
(
run_list
is
not
[]):
for
e
in
run_list
[
0
][
1
]
.
entries
:
if
e
not
in
entries_to_average
:
entries_to_consider
.
append
(
e
)
entries_to_consider
=
sorted
(
entries_to_consider
)
#print (entries_to_consider)
key_labels
=
{}
iiii
=
0
for
e
in
entries_to_consider
:
key_labels
[
e
]
=
iiii
iiii
+=
1
for
r
,
j
in
run_list
:
q
=
r
.
getScalarQuantity
(
quantity
)
run_counter
+=
1
if
(
q
is
None
):
continue
print
(
"{0:<5} {1:<15} {2:>5}/{3:<5} {4:.1f}%"
.
format
(
r
.
id
,
q
.
shape
,
run_counter
,
nb_runs
,
1.
*
run_counter
/
nb_runs
*
100
))
ent
=
[
j
[
i
]
for
i
in
entries_to_consider
]
ent
=
tuple
(
ent
)
if
(
ent
not
in
result
.
keys
()):
# print (ent)
result
[
ent
]
=
np
.
zeros
([
q
.
shape
[
0
],
3
])
cpt
[
ent
]
=
0
# print (result[ent].shape)
# print (q.shape)
sz1
=
q
.
shape
[
0
]
sz2
=
result
[
ent
]
.
shape
[
0
]
if
(
sz1
>
sz2
):
q
=
q
[:
sz2
]
elif
(
sz2
>
sz1
):
result
[
ent
]
=
result
[
ent
][:
sz1
]
result
[
ent
][:,
0
]
+=
q
[:,
0
]
result
[
ent
][:,
1
]
+=
q
[:,
1
]
result
[
ent
][:,
2
]
+=
q
[:,
1
]
**
2
cpt
[
ent
]
+=
1
for
ent
in
result
.
keys
():
key_dict
=
{}
for
k
,
i
in
key_labels
.
iteritems
():
key_dict
[
k
]
=
ent
[
i
]
# print (ent)
myjob
=
job
.
Job
(
self
.
base
)
for
i
in
range
(
0
,
len
(
entries_to_consider
)):
myjob
.
entries
[
entries_to_consider
[
i
]]
=
ent
[
i
]
result
[
ent
]
/=
cpt
[
ent
]
result
[
ent
][:,
2
]
-=
result
[
ent
][:,
1
]
**
2
result
[
ent
][:,
2
]
=
np
.
maximum
(
np
.
zeros
(
result
[
ent
][:,
2
]
.
shape
[
0
]),
result
[
ent
][:,
2
])
result
[
ent
][:,
2
]
=
np
.
sqrt
(
result
[
ent
][:,
2
])
result
[
ent
]
=
{
"ref_job"
:
myjob
,
"averaged_number"
:
cpt
[
ent
],
"data"
:
result
[
ent
],
"key_labels"
:
key_labels
,
"key_dict"
:
key_dict
}
return
result
def
averageVector
(
self
,
quantity
,
run_list
,
entries_to_average
):
result
=
dict
()
all_steps
=
dict
()
run_info
=
dict
()
cpt
=
dict
()
run_counter
=
0
nb_runs
=
len
(
run_list
)
entries_to_average
.
append
(
"id"
)
entries_to_consider
=
[]
if
(
run_list
is
not
[]):
for
e
in
run_list
[
0
][
1
]
.
entries
:
if
e
not
in
entries_to_average
:
entries_to_consider
.
append
(
e
)
for
r
,
j
in
run_list
:
steps
,
data
=
r
.
getAllVectorQuantity
(
quantity
)
run_counter
+=
1
if
(
data
is
None
):
continue
print
(
"{0:<5} {1:<15} {2:>5}/{3:<5} {4:.1f}%"
.
format
(
r
.
id
,
data
.
shape
,
run_counter
,
nb_runs
,
1.
*
run_counter
/
nb_runs
*
100
))
ent
=
[
j
[
i
]
for
i
in
entries_to_consider
]
ent
=
tuple
(
ent
)
if
(
ent
not
in
result
.
keys
()):
# print (ent)
result
[
ent
]
=
np
.
zeros
([
data
.
shape
[
0
],
data
.
shape
[
1
],
2
])
all_steps
[
ent
]
=
steps
cpt
[
ent
]
=
0
# print (result[ent].shape)
# print (q.shape)
sz1
=
data
.
shape
[
0
]
sz2
=
result
[
ent
]
.
shape
[
0
]
if
(
sz1
>
sz2
):
data
=
data
[:
sz2
]
steps
=
steps
[:
sz2
]
elif
(
sz2
>
sz1
):
result
[
ent
]
=
result
[
ent
][:
sz1
]
all_steps
[
ent
]
=
all_steps
[
ent
][:
sz1
]
result
[
ent
][:,:,
0
]
+=
data
[:,:]
result
[
ent
][:,:,
1
]
+=
data
[:,:]
**
2
cpt
[
ent
]
+=
1
for
ent
in
result
.
keys
():
# print (ent)
myjob
=
job
.
Job
(
self
.
base
)
for
i
in
range
(
0
,
len
(
entries_to_consider
)):
myjob
.
entries
[
entries_to_consider
[
i
]]
=
ent
[
i
]
result
[
ent
]
/=
cpt
[
ent
]
result
[
ent
][:,:,
1
]
-=
result
[
ent
][:,:,
0
]
**
2
result
[
ent
][:,:,
1
]
=
np
.
sqrt
(
result
[
ent
][:,:,
1
])
result
[
ent
]
=
{
"ref_job"
:
myjob
,
"averaged_number"
:
cpt
[
ent
],
"steps"
:
all_steps
[
ent
],
"data"
:
result
[
ent
]}
return
result
def
__init__
(
self
,
base
,
**
params
):
self
.
base
=
base
Event Timeline
Log In to Comment