Page MenuHomec4science

text.isi
No OneTemporary

File Metadata

Created
Wed, Jan 8, 07:09

text.isi

FN ISI Export Format
VR 1.0
PT J
AU Sauter, O
Coda, S
Goodman, TP
Henderson, MA
Behn, R
Bottino, A
Fable, E
Martynov, A
Nikkola, P
Zucca, C
TI Inductive current density perturbations to probe electron internal
transport barriers in tokamaks
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID BOOTSTRAP CURRENT; TCV TOKAMAK
AB Improved electron energy confinement in tokamak plasmas, related to
internal transport barriers, has been linked to nonmonotonic current
density profiles. This is difficult to prove experimentally since
usually the current profiles evolve continuously and current injection
generally requires significant input power. New experiments are
presented, in which the inductive current is used to generate positive
and negative current density perturbations in the plasma center, with
negligible input power. These results demonstrate unambiguously for the
first time that the electron confinement can be modified significantly
solely by perturbing the current density profile.
C1 EURATOM, EPFL, Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland.
RP Sauter, O, EURATOM, EPFL, Confederat Suisse, Ctr Rech Phys Plasmas, PPB
Stn 13, CH-1015 Lausanne, Switzerland.
NR 17
TC 0
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 18
PY 2005
VL 94
IS 10
AR 105002
PG 4
SC Physics, Multidisciplinary
UT ISI:000227838900030
ER
PT J
AU Weisen, H
Zabolotsky, A
Angioni, C
Furno, I
Garbet, X
Giroud, C
Leggate, H
Mantica, P
Mazon, A
Weiland, J
Zabeo, L
Zastrow, KD
TI Collisionality and shear dependences of density peaking in JET and
extrapolation to ITER
SO NUCLEAR FUSION
LA English
DT Letter
ID L-MODE PLASMAS; PARTICLE PINCH; ASDEX UPGRADE; INVERSION; TOKAMAK;
PROFILE; SHAPE; TCV
AB Results from an extensive database analysis of JET density profiles in
stationary conditions show that the density peaking factor n(e0)/<
n(e)> in JET H modes increases from near 1.2 at high collisionality to
around 1.5 as the plasma collisionality decreases towards the values
expected for ITER. This result confirms an earlier observation on AUG.
The density peaking behaviour of L modes is remarkably different from
that of H modes, scaling with overall plasma shear as (n(e0)/< n(e)>
similar to 1.5l(i)), independently of collisionality. H-mode density
profiles show no shear dependence, except at the lowest
collisionalities. No evidence for L-Te, L-Ti, rho* or beta dependences
has been obtained. Carbon impurity density profiles from charge
exchange spectroscopy are always less peaked than electron density
profiles and usually flat in H modes. The peaking of the electron
density profiles, together with the flatness of the impurity density
profiles, are favourable for fusion performance if they can be
extrapolated to ignited conditions.
C1 Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, EPFL, CH-1015 Lausanne, Switzerland.
EURATOM, IPP, Max Planck Inst Plasmaphys, D-85748 Garching, Germany.
Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
CEA, DRFC, DSM, EURATOM Assoc, Cadarache, France.
United Kingdom Atom Energy Author, UKAEA Euratom Fus Assoc, Abingdon, Oxon, England.
CNR, ENEA, EURATOM Assoc, Ist Fis Plasma, I-20133 Milan, Italy.
Euratom VR Assoc, Gothenburg, Sweden.
RP Weisen, H, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas,
EPFL, CH-1015 Lausanne, Switzerland.
NR 16
TC 0
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD FEB
PY 2005
VL 45
IS 2
BP L1
EP L4
PG 4
SC Physics, Fluids & Plasmas; Physics, Nuclear
UT ISI:000227818500001
ER
PT J
AU Strachan, JD
Alper, B
Corrigan, G
Erents, SK
Giroud, C
Korotkov, A
Leggate, H
Matthews, GF
Pitts, RA
Spence, J
Stamp, M
TI Methane screening in JET reverse field experiments
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE carbon impurities; edge plasma; impurity screening; JET; plasma flow
ID SCRAPE-OFF LAYER; DIII-D; IMPURITIES; TRANSPORT; DIVERTOR; PLASMAS;
JT-60U; EDGE
AB JET plasmas with reverse magnetic field feature a different SOL flow
than those with normal field. The observed carbon fuelling efficiency
from injecting methane gas was similar in reverse and normal field.
EDGE2D modeling used an externally applied force to create the SOL
flows, without specifying the origin of the force. The resulting flow
agreed reasonably with the experimental values between the separatrix
and 4 cm mid-plane depth in the SOL. The effect of the flow on the
calculated carbon screening was 5-15% higher carbon fuelling efficiency
for the low flow velocity with reverse field. (c) 2004 Elsevier B.V.
All rights reserved.
C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA.
UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
CEA, EURATOM Assoc, F-13018 St Paul Les Durance, France.
Ecole Polytech Fed Lausanne, EURATOM Assoc, Confederat Suisse, CRPP, CH-1015 Lausanne, Switzerland.
RP Strachan, JD, Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ
08543 USA.
EM jstrachan@pppl.gov
NR 10
TC 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD MAR 1
PY 2005
VL 337-39
IS 1-3
BP 25
EP 29
PG 5
SC Materials Science, Multidisciplinary; Mining & Mineral Processing;
Nuclear Science & Technology
UT ISI:000227789500005
ER
PT J
AU Andrew, P
Coad, JP
Corre, Y
Eich, T
Herrmann, A
Matthews, GF
Paley, JI
Pickworth, L
Pitts, RA
Stamp, MF
CA JET EFDA Contributors
TI Outer divertor target deposited layers during reversed magnetic field
operation in JET
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE erosion and deposition; divertor asymmetry; JET; thermography
AB Divertor surface temperatures are significantly affected by the
presence of deposited surface layers. This phenomenon can be used to
monitor deposited layer evolution on a shot-by-shot basis. It was found
that during an experimental campaign where the B x del B direction was
reversed that the outer target, normally an erosion zone, became a
deposition zone. (c) 2004 Published by Elsevier B.V.
C1 UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
EURATOM Assoc VR, KTH Phys Dept, S-10691 Stockholm, Sweden.
EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany.
Blackett Lab, Plasma Phys Grp, London SW7 2AZ, England.
EURATOM, EPFL, CRPP Assoc, Confederat Suisse, CH-1015 Lausanne, Switzerland.
RP Andrew, P, UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB,
Oxon, England.
EM pla@jet.uk
NR 9
TC 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD MAR 1
PY 2005
VL 337-39
IS 1-3
BP 99
EP 103
PG 5
SC Materials Science, Multidisciplinary; Mining & Mineral Processing;
Nuclear Science & Technology
UT ISI:000227789500020
ER
PT J
AU Pitts, RA
Andrew, P
Bonnin, X
Chankin, AV
Corre, Y
Corrigan, G
Coster, D
Duran, I
Eich, T
Erents, SK
Fundamenski, W
Huber, A
Jachmich, S
Kirnev, G
Lehnen, M
Lomas, PJ
Loarte, A
Matthews, GF
Rapp, J
Silva, C
Stamp, MF
Strachan, JD
Tsitrone, E
CA EFDA-JET workprogramme
TI Edge and divertor physics with reversed toroidal field in JET
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE SOL; particle drifts; JET; plasma flow; divertor
ID SCRAPE-OFF LAYER; BOUNDARY PLASMA; MODELS; TOKAMAK; SOL; ASYMMETRIES;
PARTICLE; DRIFTS; JT-60U; FLOW
AB Asymmetries are a ubiquitous feature of the scrape-off layer (SOL) and
divertor plasmas in any tokamak and are thought to be driven primarily
by a variety of drift flows, the directions of which reverse with
reversal of the main toroidal field. The understanding of precisely how
these field dependent drifts combine to yield any given experimental
observation is still very much incomplete. A recent campaign of
reversed field operation at JET designed to match a variety of
discharges to their more frequently executed forward field counterparts
has been executed in an attempt to contribute to this understanding.
This paper summarises the most important findings from these
experiments and includes some new EDGE2D simulation results describing
the SOL flow. (c) 2004 Elsevier B.V. All rights reserved.
C1 Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland.
UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
Assoc Euratom CEA, DRFC, DSM, CEA Cadarache, F-13108 St Paul Les Durance, France.
EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany.
EURATOM, IPP, Inst Plasma Phys, CR, Prague, Czech Republic.
FZJ Julich GmbH, EURATOM, Inst Plasma Phys, TEC, D-52425 Julich, Germany.
EURATOM, LPP, KMS, ERM, B-1000 Brussels, Belgium.
RRC Kurchatov Inst, Moscow Nucl Fus Inst, Moscow 123182, Russia.
Max Planck Inst Plasma Phys, CSU, EFDA, D-85748 Garching, Germany.
EURATOM, IST, P-1049001 Lisbon, Portugal.
Princeton Univ, Plasma Phys Lab, Princeton, NJ 08542 USA.
RP Pitts, RA, Ecole Polytech Fed Lausanne, Assoc Euratom Confederat
Suisse, Ctr Rech Phys Plasmas, Batiment PPB, CH-1015 Lausanne,
Switzerland.
EM richard.pitts@epfl.ch
NR 23
TC 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD MAR 1
PY 2005
VL 337-39
IS 1-3
BP 146
EP 153
PG 8
SC Materials Science, Multidisciplinary; Mining & Mineral Processing;
Nuclear Science & Technology
UT ISI:000227789500029
ER
PT J
AU Huber, A
Rapp, J
Andrew, P
Coad, P
Corrigan, G
Erents, K
Fundamenski, W
Ingesson, LC
Jachmich, S
Korotkov, A
Matthews, GF
Mertens, P
Philipps, V
Pitts, R
Schweer, B
Sergienko, G
Stamp, M
CA JET EFDA Contributors
TI The effect of field reversal on the JET MkIIGB-SRP divertor performance
in L-mode density limit discharges
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE divertor asymmetry; density limit; divertor radiation; detachment;
bolometer tomography
ID DIII-D; PLASMA; BEHAVIOR; PARTICLE; EDGE
AB The effect of field reversal on the JET MkIIGB-SRP divertor performance
has been investigated in L-mode density limit discharges. These
experiments show that the direction of the magnetic field has a
substantial effect on divertor physics, modifying the character of
detachment and density limits. Reversal of the ion del B-drift
direction away from the X-point results in a reduction of the density
limit of about 15%. In contrast to forward field direction, the
divertor parameters such as density and temperature as well as divertor
radiation distribution and power at the divertor target become more
symmetrical in the discharges with reversed field. The influence of
different field configurations on the divertor performance has been
analysed with respect to the dependence on density and heating power.
The experimental observations of out-in asymmetry in target power as
well as in the CIII-emission distribution is consistent with EDGE2D
simulations, which include the effect of drifts. (c) 2004 Elsevier B.V.
All rights reserved.
C1 EURATOM, Forschungszentrum Julich GmbH, Inst Plasma Phys, Trilateral Euregio Cluster, D-52425 Julich, Germany.
UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
FOM, Inst Plasmafys, Nieuwegein, Netherlands.
Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1007 Lausanne, Switzerland.
RP Huber, A, EURATOM, Forschungszentrum Julich GmbH, Inst Plasma Phys,
Trilateral Euregio Cluster, Postfach 1913, D-52425 Julich, Germany.
EM a.huber@fz-juelich.de
NR 15
TC 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD MAR 1
PY 2005
VL 337-39
IS 1-3
BP 241
EP 245
PG 5
SC Materials Science, Multidisciplinary; Mining & Mineral Processing;
Nuclear Science & Technology
UT ISI:000227789500047
ER
PT J
AU Kirnev, GS
Corrigan, G
Coster, D
Erents, SK
Fundamenski, W
Matthews, GF
Pitts, RA
TI EDGE2D code simulations of SOL flows and in-out divertor asymmetries in
JET
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE 2D modelling; parallel particle flow; divertor asymmetry; JET
ID SCRAPE-OFF-LAYER; PLASMA-FLOW; POLOIDAL ASYMMETRIES; TARGET
ASYMMETRIES; TOKAMAK; TRANSPORT; JT-60U; TURBULENCE; PARTICLE; FLUXES
AB EDGE2D simulations show that high SOL flows can be generated when an
additional radial convective transport is applied in the SOL and
pedestal region along with a 'ballooning-like' poloidal variation in
transport. This model produces an inward particle flux at the inboard
side of the plasma along with an enhanced outward flux at the outer
midplane. Parallel Mach numbers can be produced at the top of the
machine which are comparable in magnitude to those observed by the JET
Mach probes. For the normal toroidal magnetic field direction, the
parallel flow Mach number is about M = 0.32 in this case. Applying
these two additional mechanisms also allows experimental outer to inner
target power and out-in divertor line emission intensity asymmetries to
be qualitatively reproduced. (c) 2004 Elsevier B.V. All rights reserved.
C1 RRC Kurchatov Inst, Nucl Fus Inst, Moscow 123182, Russia.
Euratom UKAEA, Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
Assoc Euratom IPP, Max Planck Inst Plasmaphys, Garching, Germany.
Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech & Phys Plasmas, CH-1015 Lausanne, Switzerland.
RP Kirnev, GS, RRC Kurchatov Inst, Nucl Fus Inst, Kurchatov Sq 1, Moscow
123182, Russia.
EM kirnev@fusion.ru
NR 23
TC 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD MAR 1
PY 2005
VL 337-39
IS 1-3
BP 271
EP 275
PG 5
SC Materials Science, Multidisciplinary; Mining & Mineral Processing;
Nuclear Science & Technology
UT ISI:000227789500053
ER
PT J
AU Fundamenski, W
Andrew, P
Erents, K
Huber, A
Kirnev, G
Matthews, G
Pitts, R
Riccardo, V
Sipila, S
CA EFDA JET contributors
TI Effect of B x del B direction on SOL energy transport in JET
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE cross-field transport; edge plasma; particle drifts; plasma flow; power
deposition
ID ELMY H-MODES; DIVERTOR; PLASMA; FIELD; ASYMMETRIES; PROFILES; REVERSAL
AB The toroidal field and plasma current were reversed in recent JET
experiments to yield a large number of good forward-reversed matched
pairs. The direction, magnitude and scaling of the poloidal energy
transport in the SOL can be explained by (neo-)classical drift-related
heat fluxes (E x B and/or B x del T) whose relative contribution scales
as rho(0s)/lambda(T sigma). Radial energy transport is largely
independent of the B x del B direction, consistent with classical ion
conduction. (c) 2004 Elsevier B.V. All rights reserved.
C1 UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
TEC, FZJ Julich GmbH, Euratom Inst Plasmaphys, D-52425 Julich, Germany.
RRC Kurchatov Inst, Moscow Nucl Fus Inst, Moscow 123182, Russia.
Assoc Euratom Confederat Suisse, CRPP EDFL, CH-1015 Lausanne, Switzerland.
Helsinki Univ Technol, Euratom Tekes Assoc, FIN-02015 Espoo, Finland.
RP Fundamenski, W, UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14
3DB, Oxon, England.
EM wfund@jet.uk
NR 17
TC 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD MAR 1
PY 2005
VL 337-39
IS 1-3
BP 305
EP 309
PG 5
SC Materials Science, Multidisciplinary; Mining & Mineral Processing;
Nuclear Science & Technology
UT ISI:000227789500060
ER
PT J
AU Eich, T
Herrmann, A
Pautasso, G
Andrew, P
Asakura, N
Boedo, JA
Corre, Y
Fenstermacher, ME
Fuchs, JC
Fundamenski, W
Federici, G
Gauthier, E
Goncalves, B
Gruber, O
Kirk, A
Leonard, AW
Loarte, A
Matthews, GF
Neuhauser, J
Pitts, RA
Riccardo, V
Silva, C
TI Power deposition onto plasma facing components in poloidal divertor
tokamaks during type-I ELMS and disruptions
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE power deposition; divertor; first wall; ELMs; disruption
ID EDGE LOCALIZED MODES; SCRAPE-OFF LAYER; PARTICLE LOSSES; DIII-D;
ASDEX-UPGRADE; HEAT-FLUX; H-MODES; ENERGY; JET; ITER
AB A comparative analysis of the spatial and temporal characteristics of
transient energy loads (ELMs and disruptions) on plasma facing
components (PFCs) in present tokamak devices and their extrapolation to
next step devices is presented. Type I ELMs lead to the expulsion of
energy by the plasma in helical structures with ballooning-like
features and toroidal numbers in the range n = 10-15. The plasma energy
is transported towards the divertor and the main chamber PFCs leading
to significant transient energy loads at these two locations on small
wetted area. The largest transient energy fluxes onto PFCs in tokamaks
are measured during the thermal quench of disruptions. These fluxes do
not exceed greatly those of large Type I ELMs, due to the much larger
wetted area for energy flux during the thermal quench compared to Type
I ELMs. The implications of these findings for the next step devices
are discussed. (c) 2004 Elsevier B.V. All rights reserved.
C1 Max Planck Inst Plasma Phys, IPP, EURATOM Assoc, D-85748 Garching, Germany.
Culham Sci Ctr, EURATOM, UKAEA Fus Assoc, Abingdon OX14 3DB, Oxon, England.
Univ Calif San Diego, La Jolla, CA 92093 USA.
CEA, EURATOM Assoc, F-13108 St Paul Les Durance, France.
Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
Max Planck Inst Plasma Phys, ITER JWS, Garching, Germany.
Inst Super Tecn, EURATOM Assoc, Lisbon, Portugal.
Gen Atom, San Diego, CA 92186 USA.
Max Planck Inst Plasma Phys, CSU, EFDA, Garching, Germany.
EPFL, CRPP, EURATOM Assoc, CH-1015 Lausanne, Switzerland.
RP Eich, T, Max Planck Inst Plasma Phys, IPP, EURATOM Assoc, Boltzmann Str
2, D-85748 Garching, Germany.
EM thomas.eich@ipp.mpg.de
NR 48
TC 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD MAR 1
PY 2005
VL 337-39
IS 1-3
BP 669
EP 676
PG 8
SC Materials Science, Multidisciplinary; Mining & Mineral Processing;
Nuclear Science & Technology
UT ISI:000227789500133
ER
PT J
AU Becoulet, M
Huysmans, G
Thomas, P
Joffrin, E
Rimini, F
Monier-Garbet, P
Grosman, A
Ghendrih, P
Parail, V
Lomas, P
Matthews, G
Wilson, H
Gryaznevich, M
Counsell, G
Loarte, A
Saibene, G
Sartori, R
Leonard, A
Snyder, P
Evans, T
Gohil, P
Moyer, R
Kamada, Y
Oyama, N
Hatae, T
Kamiya, K
Degeling, A
Martin, Y
Lister, J
Rapp, J
Perez, C
Lang, P
Chankin, A
Eich, T
Sips, A
Stober, J
Horton, L
Kallenbach, A
Suttrop, W
Saarelma, S
Cowley, S
Lonnroth, J
Shimada, M
Polevoi, A
Federici, G
TI Edge localized modes control: experiment and theory
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE ELM; ELM control; edge modelling
ID ELMY H-MODES; MHD STABILITY ANALYSIS; ASDEX UPGRADE; I ELMS; DIII-D;
TRANSPORT BARRIERS; PELLET INJECTION; BOUNDARY PLASMA; PARTICLE LOSSES;
HIGH-DENSITY
AB The paper reviews recent theoretical and experimental results focussing
on the identification of the key factors controlling ELM energy and
particle losses both in natural ELMs and in the presence of external
controlling mechanisms. Present experiment and theory pointed out the
benefit of the high plasma shaping, high q(95) and high pedestal
density in reducing the ELM affected area and conductive energy losses
in Type I ELMs. Small benign ELMs regimes in present machines (EDA,
HRS, Type II, Grassy, QH, Type III in impurity seeded discharges at
high delta) and their relevance for ITER are reviewed. Recent studies
of active control of ELMs using stochastic boundaries, small pellets
and edge current generation are presented. (c) 2004 Elsevier B.V. All
rights reserved.
C1 CEA Cadarache, DSM, DRFC, EURATOM Assoc, F-13108 St Paul Les Durance, France.
Fus Culham Sci Ctr, EURATOM, UKAEA Assoc, Abingdon OX14 3EA, Oxon, England.
EFDA Close Support Unit, D-85748 Garching, Germany.
Gen Atom, San Diego, CA USA.
Univ Calif San Diego, La Jolla, CA 92093 USA.
Japan Atom Energy Res Inst, Naka, Ibaraki 3110193, Japan.
Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland.
KFA Julich GmbH, Forschungszentrum, Inst Plasma Phys, D-52425 Julich, Germany.
Max Planck Inst Plasma Phys, IPP, EURATOM Assoc, D-85748 Garching, Germany.
Helsinki Univ Technol, TEKES Assoc, EURATOM, FIN-02015 Helsinki, Finland.
Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2BZ, England.
Helsinki Univ Technol, EURATOM, Tekes, Helsinki 02015, Finland.
ITER Int Team, Naka, Ibaraki 3110193, Japan.
ITER JWS Garching Coctr, D-85748 Garching, Germany.
RP Becoulet, M, CEA Cadarache, DSM, DRFC, EURATOM Assoc, F-13108 St Paul
Les Durance, France.
EM marina@drfc.cad.cea.fr
NR 59
TC 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD MAR 1
PY 2005
VL 337-39
IS 1-3
BP 677
EP 683
PG 7
SC Materials Science, Multidisciplinary; Mining & Mineral Processing;
Nuclear Science & Technology
UT ISI:000227789500134
ER
PT J
AU Solano, ER
Jachmich, S
Villone, F
Hawkes, N
Corre, Y
Pitts, RA
Loarte, A
Alper, B
Guenther, K
Koroktov, A
Stamp, M
Andrew, P
Arshad, SA
Conboy, J
Bolzonella, T
Rachlew, E
Kempenaars, M
Cenedese, A
Testa, D
CA JET EFDA contributors
TI ELMS and strike point jumps
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE ELM; edge currents; edge plasma; edge pedestal; JET
AB If an ELM is a peeling of flux surfaces from the plasma, due to a
broken separatrix, current density is lost as well as particles and
energy. The fast loss of a current-carrying plasma layer modifies the
plasma equilibrium, leading to sudden shifts in the strike points at
each ELM, towards the plasma centre. An experimental study of this
conjectured model of the ELM has been made at JET, showing that in all
cases of Type I ELMs studied, strike point shifts were observed. In two
cases studied in detail, the estimated equilibrium changes provoked by
flux surface peeling agree qualitatively with the observed strike point
shifts. (c) 2004 Elsevier B.V. All rights reserved.
C1 CIEMAT Fus, Asociac EURATOM, E-28040 Madrid, Spain.
Assoc EURATOM Belgian State, LPP, KMS, ERM, B-1000 Brussels, Belgium.
Univ Cassino, EURATOM Assoc, DAEIMI, CREATE,ENEA, I-03043 Cassino, Italy.
Culham Sci Ctr, UKAEA Euratom Fus Assoc, Abingdon OX14 3DB, Oxon, England.
CEA Cadarache, EURATOM Assoc, CEA, DSM,DRFC, F-13108 St Paul Les Durance, France.
EPFL, Assoc Euratom Confederat Suisse, CRPP, CH-1015 Lausanne, Switzerland.
Max Planck Inst Plasma Phys, EFDA Close Support Unit, D-85748 Garching, Germany.
ENEA Fus, EURATOM Assoc, Consorzio RFX, I-35127 Padua, Italy.
KTH, Dept Phys, EURATOM, VR Assoc, S-10691 Stockholm, Sweden.
TEC, FOM, EURATOM Assoc, FOM Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands.
Univ Padua, DIE, I-35131 Padua, Italy.
RP Solano, ER, CIEMAT Fus, Asociac EURATOM, Avda Compultense 22, E-28040
Madrid, Spain.
EM emilia.solano@cieniat.es
alberto.loarte@efda.org
NR 8
TC 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD MAR 1
PY 2005
VL 337-39
IS 1-3
BP 747
EP 750
PG 4
SC Materials Science, Multidisciplinary; Mining & Mineral Processing;
Nuclear Science & Technology
UT ISI:000227789500147
ER
EF

Event Timeline