Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94052846
search_engine.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Dec 3, 13:04
Size
13 KB
Mime Type
text/x-python
Expires
Thu, Dec 5, 13:04 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22725011
Attached To
R3600 invenio-infoscience
search_engine.py
View Options
# -*- coding: utf-8 -*-
##
## This file is part of Invenio.
## Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2014 CERN.
##
## Invenio is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation; either version 2 of the
## License, or (at your option) any later version.
##
## Invenio is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Invenio; if not, write to the Free Software Foundation, Inc.,
## 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
""" Author search engine. """
from
.config
import
QGRAM_LEN
,
MATCHING_QGRAMS_PERCENTAGE
,
\
MAX_T_OCCURANCE_RESULT_LIST_CARDINALITY
,
MIN_T_OCCURANCE_RESULT_LIST_CARDINALITY
,
\
NAME_SCORE_COEFFICIENT
from
Queue
import
Queue
from
threading
import
Thread
from
operator
import
itemgetter
from
msgpack
import
packb
as
serialize
from
msgpack
import
unpackb
as
deserialize
from
invenio.utils.text
import
translate_to_ascii
from
intbitset
import
intbitset
from
.name_utils
import
create_indexable_name
,
distance
,
split_name_parts
from
.dbinterface
import
get_confirmed_name_to_authors_mapping
,
get_authors_data_from_indexable_name_ids
,
get_inverted_lists
,
\
set_inverted_lists_ready
,
set_dense_index_ready
,
populate_table
,
search_engine_is_operating
def
get_qgrams_from_string
(
string
,
q
):
'''
It decomposes the given string to its qgrams. The qgrams of a string are its substrings of length q.
For example the 2-grams (q=2) of string cathey are (ca,at,th,he,ey).
@param string: the string to be decomposed
@type string: str
@param q: the length of the grams
@type q: int
@return: the string qgrams ordered accordingly to the position they withhold in the string
@rtype: list
'''
qgrams
=
list
()
for
i
in
range
(
len
(
string
)
+
1
-
q
):
qgrams
.
append
(
string
[
i
:
i
+
q
])
return
qgrams
def
create_dense_index
(
name_pids_dict
,
names_list
,
q
):
'''
It builds the dense index which maps a name to the set of personids whi withhold that name.
Each entry in the dense index is identified by a unique id called name id.
@param name_pids_dict:
@type name_pids_dict: dict
@param names_list: the names to be indexed
@type names_list: list
'''
def
_create_dense_index
(
name_pids_dict
,
names_list
):
name_id
=
0
args
=
list
()
for
name
in
names_list
:
person_name
,
personids
=
name_pids_dict
[
name
]
args
+=
[
name_id
,
person_name
,
serialize
(
list
(
personids
))]
name_id
+=
1
populate_table
(
'aidDENSEINDEX'
,
[
'name_id'
,
'person_name'
,
'personids'
],
args
)
set_dense_index_ready
()
result
=
(
True
,
None
)
try
:
_create_dense_index
(
name_pids_dict
,
names_list
)
except
Exception
as
e
:
result
=
(
False
,
e
)
q
.
put
(
result
)
def
create_inverted_lists
(
names_list
,
q
):
'''
It builds the inverted index which maps a qgram to the set of name ids that share that qgram.
To construct the index it decomposes each name string into its qgrams and adds its id to the
corresponding inverted list.
@param names_list: the names to be indexed
@type names_list: list
'''
def
create_inverted_lists_worker
(
names_list
):
name_id
=
0
inverted_lists
=
dict
()
for
name
in
names_list
:
qgrams
=
set
(
get_qgrams_from_string
(
name
,
QGRAM_LEN
))
for
qgram
in
qgrams
:
try
:
inverted_list
,
cardinality
=
inverted_lists
[
qgram
]
inverted_list
.
add
(
name_id
)
inverted_lists
[
qgram
][
1
]
=
cardinality
+
1
except
KeyError
:
inverted_lists
[
qgram
]
=
[
set
([
name_id
]),
1
]
name_id
+=
1
args
=
list
()
for
qgram
in
inverted_lists
.
keys
():
inverted_list
,
cardinality
=
inverted_lists
[
qgram
]
args
+=
[
qgram
,
serialize
(
list
(
inverted_list
)),
cardinality
]
populate_table
(
'aidINVERTEDLISTS'
,
[
'qgram'
,
'inverted_list'
,
'list_cardinality'
],
args
)
set_inverted_lists_ready
()
result
=
(
True
,
None
)
try
:
create_inverted_lists_worker
(
names_list
)
except
Exception
as
e
:
result
=
(
False
,
e
)
q
.
put
(
result
)
def
create_bibauthorid_indexer
():
'''
It constructs the disk-based indexer. It consists of the dense index (which maps a name
to the set of personids who withhold that name) and the inverted lists (which map a qgram
to the set of name ids that share that qgram).
'''
name_pids_dict
=
get_confirmed_name_to_authors_mapping
()
if
not
name_pids_dict
:
return
indexable_name_pids_dict
=
dict
()
for
name
in
name_pids_dict
.
keys
():
asciified_name
=
translate_to_ascii
(
name
)[
0
]
indexable_name
=
create_indexable_name
(
asciified_name
)
if
indexable_name
:
try
:
asciified_name
,
pids
=
indexable_name_pids_dict
[
indexable_name
]
updated_pids
=
pids
|
name_pids_dict
[
name
]
indexable_name_pids_dict
[
indexable_name
]
=
(
asciified_name
,
updated_pids
)
except
KeyError
:
indexable_name_pids_dict
[
indexable_name
]
=
(
asciified_name
,
name_pids_dict
[
name
])
surname
=
split_name_parts
(
name
)[
0
]
asciified_surname
=
translate_to_ascii
(
surname
)[
0
]
indexable_surname
=
create_indexable_name
(
asciified_surname
)
if
indexable_surname
:
try
:
asciified_surname
,
pids
=
indexable_name_pids_dict
[
indexable_surname
]
updated_pids
=
pids
|
name_pids_dict
[
name
]
indexable_name_pids_dict
[
indexable_surname
]
=
(
asciified_surname
,
updated_pids
)
except
KeyError
:
indexable_name_pids_dict
[
indexable_surname
]
=
(
asciified_surname
,
name_pids_dict
[
name
])
indexable_names_list
=
indexable_name_pids_dict
.
keys
()
# If an exception/error occurs in any of the threads it is not detectable
# so inter-thread communication is necessary to make it visible.
q
=
Queue
()
threads
=
list
()
threads
.
append
(
Thread
(
target
=
create_dense_index
,
args
=
(
indexable_name_pids_dict
,
indexable_names_list
,
q
)))
threads
.
append
(
Thread
(
target
=
create_inverted_lists
,
args
=
(
indexable_names_list
,
q
)))
for
t
in
threads
:
t
.
start
()
for
t
in
threads
:
all_ok
,
error
=
q
.
get
(
block
=
True
)
if
not
all_ok
:
raise
error
q
.
task_done
()
for
t
in
threads
:
t
.
join
()
def
solve_T_occurence_problem
(
query_string
):
'''
It solves a 'T-occurence problem' which is defined as follows: find the string ids
that apper at least T times on the inverted lists of the query string qgrams. If the
result dataset is bigger than a threshold it tries to limit it further.
@param query_string:
@type query_string: str
@return: T_occurence_problem answers
@rtype: list
'''
query_string_qgrams
=
get_qgrams_from_string
(
query_string
,
QGRAM_LEN
)
query_string_qgrams_set
=
set
(
query_string_qgrams
)
if
not
query_string_qgrams_set
:
return
None
inverted_lists
=
get_inverted_lists
(
query_string_qgrams_set
)
if
not
inverted_lists
:
return
None
inverted_lists
=
sorted
(
inverted_lists
,
key
=
itemgetter
(
1
),
reverse
=
True
)
T
=
int
(
MATCHING_QGRAMS_PERCENTAGE
*
len
(
inverted_lists
))
nameids
=
intbitset
(
deserialize
(
inverted_lists
[
0
][
0
]))
for
i
in
range
(
1
,
T
):
inverted_list
=
intbitset
(
deserialize
(
inverted_lists
[
i
][
0
]))
nameids
&=
inverted_list
for
i
in
range
(
T
,
len
(
inverted_lists
)):
if
len
(
nameids
)
<
MAX_T_OCCURANCE_RESULT_LIST_CARDINALITY
:
break
inverted_list
=
intbitset
(
deserialize
(
inverted_lists
[
i
][
0
]))
nameids_temp
=
inverted_list
&
nameids
if
len
(
nameids_temp
)
>
MIN_T_OCCURANCE_RESULT_LIST_CARDINALITY
:
nameids
=
nameids_temp
else
:
break
return
nameids
def
calculate_name_score1
(
query_string
,
nameids
):
'''
docstring
@param query_string:
@type query_string:
@param nameids:
@type nameids:
@return:
@rtype:
'''
name_personids_list
=
get_authors_data_from_indexable_name_ids
(
nameids
)
query_last_name
=
split_name_parts
(
query_string
)[
0
]
query_last_name_len
=
len
(
query_last_name
)
name_score_list
=
list
()
for
name
,
personids
in
name_personids_list
:
current_last_name
=
split_name_parts
(
name
)[
0
]
current_last_name_len
=
len
(
current_last_name
)
if
abs
(
query_last_name_len
-
current_last_name_len
)
==
0
:
dist
=
distance
(
query_last_name
,
current_last_name
)
limit
=
min
([
query_last_name_len
,
current_last_name_len
])
name_score
=
sum
([
1
/
float
(
2
**
(
i
+
1
))
for
i
in
range
(
limit
)
if
query_last_name
[
i
]
==
current_last_name
[
i
]])
/
(
dist
+
1
)
if
name_score
>
0.5
:
name_score_list
.
append
((
name
,
name_score
,
deserialize
(
personids
)))
return
name_score_list
def
calculate_name_score
(
query_string
,
nameids
):
'''
docstring
@param query_string:
@type query_string:
@param nameids:
@type nameids:
@return:
@rtype:
'''
name_personids_list
=
get_authors_data_from_indexable_name_ids
(
nameids
)
query_last_name
=
split_name_parts
(
query_string
)[
0
]
query_last_name_len
=
len
(
query_last_name
)
name_score_list
=
list
()
for
name
,
personids
in
name_personids_list
:
current_last_name
=
split_name_parts
(
name
)[
0
]
current_last_name_len
=
len
(
current_last_name
)
if
abs
(
query_last_name_len
-
current_last_name_len
)
==
0
:
dist
=
distance
(
query_last_name
,
current_last_name
)
limit
=
min
([
query_last_name_len
,
current_last_name_len
])
name_score
=
sum
([
1
/
float
(
2
**
(
i
+
1
))
for
i
in
range
(
limit
)
if
query_last_name
[
i
]
==
current_last_name
[
i
]])
/
(
dist
+
1
)
if
name_score
>
0.5
:
name_score_list
.
append
((
name
,
name_score
,
deserialize
(
personids
)))
return
name_score_list
def
calculate_pid_score
(
names_score_list
):
'''
docstring
@param names_score_list:
@type names_score_list:
@return:
@rtype:
'''
max_appearances
=
1
pid_metrics_dict
=
dict
()
for
name
,
name_score
,
personids
in
names_score_list
:
for
pid
in
personids
:
try
:
appearances
=
pid_metrics_dict
[
pid
][
2
]
+
1
pid_metrics_dict
[
pid
][
2
]
=
appearances
if
appearances
>
max_appearances
:
max_appearances
=
appearances
except
KeyError
:
pid_metrics_dict
[
pid
]
=
[
name
,
name_score
,
1
]
pids_score_list
=
list
()
for
pid
in
pid_metrics_dict
.
keys
():
name
,
name_score
,
appearances
=
pid_metrics_dict
[
pid
]
final_score
=
NAME_SCORE_COEFFICIENT
*
name_score
+
(
1
-
NAME_SCORE_COEFFICIENT
)
*
(
appearances
/
float
(
max_appearances
))
pids_score_list
.
append
((
pid
,
name
,
final_score
))
return
pids_score_list
def
find_personids_by_name1
(
query_string
):
'''
It finds a collection of personids who own a signature that is similar to the given query string.
Its approach is by solving a 'T-occurance problem' and then it applies some filters to the candidate
answers so it can remove the false positives. In the end it sorts the result set based on the score
they obtained.
@param query_string:
@type query_string: str
@return: personids which own a signature similar to the query string
@rtype: list
'''
search_engine_is_functioning
=
search_engine_is_operating
()
if
not
search_engine_is_functioning
:
return
list
()
asciified_query_string
=
translate_to_ascii
(
query_string
)[
0
]
indexable_query_string
=
create_indexable_name
(
asciified_query_string
)
if
not
indexable_query_string
:
return
list
()
#query_string_surname = split_name_parts(query_string)[0]
#asciified_query_string_surname = translate_to_ascii(query_string_surname)[0]
#indexable_query_string_surname = create_indexable_name(asciified_query_string_surname)
#if not indexable_query_string and not indexable_query_string_surname:
# return list()
s1
=
solve_T_occurence_problem
(
indexable_query_string
)
if
not
s1
:
s1
=
intbitset
()
nameids
=
solve_T_occurence_problem
(
indexable_query_string
)
#s2 = solve_T_occurence_problem(indexable_query_string_surname)
#if not s2:
# s2 = intbitset()
#nameids = s1 | s2
if
not
nameids
:
return
list
()
name_score_list
=
calculate_name_score
(
asciified_query_string
,
nameids
)
return
name_score_list
#name_ranking_list = sorted(name_score_list, key=itemgetter(1), reverse=True)
#pid_score_list = calculate_pid_score(name_ranking_list)
#pids_ranking_list = sorted(pid_score_list, key=itemgetter(2), reverse=True)
#ranked_pid_name_list = [pid for pid, name, final_score in pids_ranking_list]
#return ranked_pid_name_list
def
find_personids_by_name
(
query_string
):
query_string_surname
=
split_name_parts
(
query_string
)[
0
]
name_score_list
=
set
(
find_personids_by_name1
(
query_string
)
+
find_personids_by_name1
(
query_string_surname
))
name_ranking_list
=
sorted
(
name_score_list
,
key
=
itemgetter
(
1
),
reverse
=
True
)
pid_score_list
=
calculate_pid_score
(
name_ranking_list
)
pids_ranking_list
=
sorted
(
pid_score_list
,
key
=
itemgetter
(
2
),
reverse
=
True
)
ranked_pid_name_list
=
[
pid
for
pid
,
name
,
final_score
in
pids_ranking_list
]
return
ranked_pid_name_list
Event Timeline
Log In to Comment