Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F98586323
logicutils.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Jan 14, 14:51
Size
25 KB
Mime Type
text/x-python
Expires
Thu, Jan 16, 14:51 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
23592333
Attached To
R3600 invenio-infoscience
logicutils.py
View Options
# -*- coding: utf-8 -*-
# logicutils.py was originally distributed as part of the aima-python project, at
# http://code.google.com/p/aima-python/
# At the time it was integrated into Invenio (2010 May 20), aima-python
# had a notice on its website declaring the code to be under the "MIT license"
# and linking to http://www.opensource.org/licenses/mit-license.php by way of
# explanation.
#
# The contents of this file remain under that license (included below). If
# you modify this file, just add your name and email address as it appears
# below. See also:
# http://www.softwarefreedom.org/resources/2007/gpl-non-gpl-collaboration.html
#
# Portions Copyright 2010, Peter Norvig <peter.norvig@google.com>
# Portions Copyright 2010, Joseph Blaylock <jrbl@slac.stanford.edu>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
"""Representations and Inference for Logic (Chapters 7-10)
Covers both Propositional and First-Order Logic. First we have important data
types:
Expr A logical expression
substitution Implemented as a dictionary of var:value pairs, {x:1, y:x}
Be careful: some code here may not expect to take Exprs as arguments.
pl_true Evaluate a propositional logical sentence in a model
And a few other functions:
to_cnf Convert to conjunctive normal form
diff, simp Symbolic differentiation and simplification
"""
import
re
#
# Utility functions used by the code below
#______________________________________________________________________________
def
isnumber
(
x
):
"Is x a number? We say it is if it has a __int__ method."
return
hasattr
(
x
,
'__int__'
)
def
num_or_str
(
x
):
"""The argument is a string; convert to a number if possible, or strip it.
>>> num_or_str('42')
42
>>> num_or_str(' 42x ')
'42x'
"""
if
isnumber
(
x
):
return
x
try
:
return
int
(
x
)
except
ValueError
:
try
:
return
float
(
x
)
except
ValueError
:
return
str
(
x
)
.
strip
()
def
find_if
(
predicate
,
seq
):
"""If there is an element of seq that satisfies predicate; return it.
>>> find_if(callable, [3, min, max])
<built-in function min>
>>> find_if(callable, [1, 2, 3])
"""
for
x
in
seq
:
if
predicate
(
x
):
return
x
return
None
#
# Expr represents a symbolic mathematical expression
#______________________________________________________________________________
def
expr
(
s
):
"""Create an Expr representing a logic expression by parsing the input
string. Symbols and numbers are automatically converted to Exprs.
In addition you can use alternative spellings of these operators:
'x ==> y' parses as (x >> y) # Implication
'x <== y' parses as (x << y) # Reverse implication
'x <=> y' parses as (x % y) # Logical equivalence
'x =/= y' parses as (x ^ y) # Logical disequality (xor)
But BE CAREFUL; precedence of implication is wrong. expr('P & Q ==> R & S')
is ((P & (Q >> R)) & S); so you must use expr('(P & Q) ==> (R & S)').
>>> expr('P <=> Q(1)')
(P <=> Q(1))
>>> expr('P & Q | ~R(x, F(x))')
((P & Q) | ~R(x, F(x)))
WARNING: Uses eval()! Do not use with unsanitized inputs!
"""
if
isinstance
(
s
,
Expr
):
return
s
if
isnumber
(
s
):
return
Expr
(
s
)
## Replace the alternative spellings of operators with canonical spellings
s
=
s
.
replace
(
'==>'
,
'>>'
)
.
replace
(
'<=='
,
'<<'
)
s
=
s
.
replace
(
'<=>'
,
'%'
)
.
replace
(
'=/='
,
'^'
)
## Replace a symbol or number, such as 'P' with 'Expr("P")'
s
=
re
.
sub
(
r'([a-zA-Z0-9_.]+)'
,
r'Expr("\1")'
,
s
)
## Now eval the string. (A security hole; do not use with an adversary.)
return
eval
(
s
,
{
'Expr'
:
Expr
})
class
Expr
:
"""A symbolic mathematical expression. We use this class for logical
expressions, and for terms within logical expressions. In general, an
Expr has an op (operator) and a list of args. The op can be:
Null-ary (no args) op:
A number, representing the number itself. (e.g. Expr(42) => 42)
A symbol, representing a variable or constant (e.g. Expr('F') => F)
Unary (1 arg) op:
'~', '-', representing NOT, negation (e.g. Expr('~', Expr('P')) => ~P)
Binary (2 arg) op:
'>>', '<<', representing forward and backward implication
'+', '-', '*', '/', '**', representing arithmetic operators
'<', '>', '>=', '<=', representing comparison operators
'<=>', '^', representing logical equality and XOR
N-ary (0 or more args) op:
'&', '|', representing conjunction and disjunction
A symbol, representing a function term or FOL proposition
Exprs can be constructed with operator overloading: if x and y are Exprs,
then so are x + y and x & y, etc. Also, if F and x are Exprs, then so is
F(x); it works by overloading the __call__ method of the Expr F. Note
that in the Expr that is created by F(x), the op is the str 'F', not the
Expr F. See http://www.python.org/doc/current/ref/specialnames.html
to learn more about operator overloading in Python.
WARNING: x == y and x != y are NOT Exprs. The reason is that we want
to write code that tests 'if x == y:' and if x == y were the same
as Expr('==', x, y), then the result would always be true; not what a
programmer would expect. But we still need to form Exprs representing
equalities and disequalities. We concentrate on logical equality (or
equivalence) and logical disequality (or XOR). You have 3 choices:
(1) Expr('<=>', x, y) and Expr('^', x, y)
Note that ^ is bitwose XOR in Python (and Java and C++)
(2) expr('x <=> y') and expr('x =/= y').
See the doc string for the function expr.
(3) (x % y) and (x ^ y).
It is very ugly to have (x % y) mean (x <=> y), but we need
SOME operator to make (2) work, and this seems the best choice.
WARNING: if x is an Expr, then so is x + 1, because the int 1 gets
coerced to an Expr by the constructor. But 1 + x is an error, because
1 doesn't know how to add an Expr. (Adding an __radd__ method to Expr
wouldn't help, because int.__add__ is still called first.) Therefore,
you should use Expr(1) + x instead, or ONE + x, or expr('1 + x').
"""
def
__init__
(
self
,
op
,
*
args
):
"Op is a string or number; args are Exprs (or are coerced to Exprs)."
assert
isinstance
(
op
,
str
)
or
(
isnumber
(
op
)
and
not
args
)
self
.
op
=
num_or_str
(
op
)
self
.
args
=
map
(
expr
,
args
)
## Coerce args to Exprs
def
__call__
(
self
,
*
args
):
"""Self must be a symbol with no args, such as Expr('F'). Create a new
Expr with 'F' as op and the args as arguments."""
assert
is_symbol
(
self
.
op
)
and
not
self
.
args
return
Expr
(
self
.
op
,
*
args
)
def
__repr__
(
self
):
"Show something like 'P' or 'P(x, y)', or '~P' or '(P | Q | R)'"
if
len
(
self
.
args
)
==
0
:
# Constant or proposition with arity 0
return
str
(
self
.
op
)
elif
is_symbol
(
self
.
op
):
# Functional or Propositional operator
return
'
%s
(
%s
)'
%
(
self
.
op
,
', '
.
join
(
map
(
repr
,
self
.
args
)))
elif
len
(
self
.
args
)
==
1
:
# Prefix operator
return
self
.
op
+
repr
(
self
.
args
[
0
])
else
:
# Infix operator
return
'(
%s
)'
%
(
' '
+
self
.
op
+
' '
)
.
join
(
map
(
repr
,
self
.
args
))
def
__eq__
(
self
,
other
):
"""x and y are equal iff their ops and args are equal."""
return
(
other
is
self
)
or
(
isinstance
(
other
,
Expr
)
and
self
.
op
==
other
.
op
and
self
.
args
==
other
.
args
)
def
__hash__
(
self
):
"Need a hash method so Exprs can live in dicts."
return
hash
(
self
.
op
)
^
hash
(
tuple
(
self
.
args
))
def
__str__
(
self
):
return
repr
(
self
)
# See http://www.python.org/doc/current/lib/module-operator.html
# Not implemented: not, abs, pos, concat, contains, *item, *slice
def
__lt__
(
self
,
other
):
return
Expr
(
'<'
,
self
,
other
)
def
__le__
(
self
,
other
):
return
Expr
(
'<='
,
self
,
other
)
def
__ge__
(
self
,
other
):
return
Expr
(
'>='
,
self
,
other
)
def
__gt__
(
self
,
other
):
return
Expr
(
'>'
,
self
,
other
)
def
__add__
(
self
,
other
):
return
Expr
(
'+'
,
self
,
other
)
def
__sub__
(
self
,
other
):
return
Expr
(
'-'
,
self
,
other
)
def
__and__
(
self
,
other
):
return
Expr
(
'&'
,
self
,
other
)
def
__div__
(
self
,
other
):
return
Expr
(
'/'
,
self
,
other
)
def
__truediv__
(
self
,
other
):
return
Expr
(
'/'
,
self
,
other
)
def
__invert__
(
self
):
return
Expr
(
'~'
,
self
)
def
__lshift__
(
self
,
other
):
return
Expr
(
'<<'
,
self
,
other
)
def
__rshift__
(
self
,
other
):
return
Expr
(
'>>'
,
self
,
other
)
def
__mul__
(
self
,
other
):
return
Expr
(
'*'
,
self
,
other
)
def
__neg__
(
self
):
return
Expr
(
'-'
,
self
)
def
__or__
(
self
,
other
):
return
Expr
(
'|'
,
self
,
other
)
def
__pow__
(
self
,
other
):
return
Expr
(
'**'
,
self
,
other
)
def
__xor__
(
self
,
other
):
return
Expr
(
'^'
,
self
,
other
)
def
__mod__
(
self
,
other
):
return
Expr
(
'<=>'
,
self
,
other
)
## (x % y)
def
is_symbol
(
s
):
"A string s is a symbol if it starts with an alphabetic char."
return
isinstance
(
s
,
str
)
and
s
[
0
]
.
isalpha
()
def
is_var_symbol
(
s
):
"A logic variable symbol is an initial-lowercase string."
return
is_symbol
(
s
)
and
s
[
0
]
.
islower
()
def
is_prop_symbol
(
s
):
"""A proposition logic symbol is an initial-uppercase string other than
TRUE or FALSE."""
return
is_symbol
(
s
)
and
s
[
0
]
.
isupper
()
and
s
!=
'TRUE'
and
s
!=
'FALSE'
def
is_positive
(
s
):
"""s is an unnegated logical expression
>>> is_positive(expr('F(A, B)'))
True
>>> is_positive(expr('~F(A, B)'))
False
"""
return
s
.
op
!=
'~'
def
is_negative
(
s
):
"""s is a negated logical expression
>>> is_negative(expr('F(A, B)'))
False
>>> is_negative(expr('~F(A, B)'))
True
"""
return
s
.
op
==
'~'
def
is_literal
(
s
):
"""s is a FOL literal
>>> is_literal(expr('~F(A, B)'))
True
>>> is_literal(expr('F(A, B)'))
True
>>> is_literal(expr('F(A, B) & G(B, C)'))
False
"""
return
is_symbol
(
s
.
op
)
or
(
s
.
op
==
'~'
and
is_literal
(
s
.
args
[
0
]))
def
literals
(
s
):
"""returns the list of literals of logical expression s.
>>> literals(expr('F(A, B)'))
[F(A, B)]
>>> literals(expr('~F(A, B)'))
[~F(A, B)]
>>> literals(expr('(F(A, B) & G(B, C)) ==> R(A, C)'))
[F(A, B), G(B, C), R(A, C)]
"""
op
=
s
.
op
if
op
in
set
([
'&'
,
'|'
,
'<<'
,
'>>'
,
'%'
,
'^'
]):
result
=
[]
for
arg
in
s
.
args
:
result
.
extend
(
literals
(
arg
))
return
result
elif
is_literal
(
s
):
return
[
s
]
else
:
return
[]
def
variables
(
s
):
"""returns the set of variables in logical expression s.
>>> ppset(variables(F(x, A, y)))
set([x, y])
>>> ppset(variables(expr('F(x, x) & G(x, y) & H(y, z) & R(A, z, z)')))
set([x, y, z])
"""
if
is_literal
(
s
):
return
set
([
v
for
v
in
s
.
args
if
is_variable
(
v
)])
else
:
lvars
=
set
([])
for
lit
in
literals
(
s
):
lvars
=
lvars
.
union
(
variables
(
lit
))
return
lvars
## Useful constant Exprs used in examples and code:
TRUE
,
FALSE
,
ZERO
,
ONE
,
TWO
=
map
(
Expr
,
[
'TRUE'
,
'FALSE'
,
0
,
1
,
2
])
#______________________________________________________________________________
def
prop_symbols
(
x
):
"Return a list of all propositional symbols in x."
if
not
isinstance
(
x
,
Expr
):
return
[]
elif
is_prop_symbol
(
x
.
op
):
return
[
x
]
else
:
s
=
set
(())
for
arg
in
x
.
args
:
for
symbol
in
prop_symbols
(
arg
):
s
.
add
(
symbol
)
return
list
(
s
)
def
pl_true
(
exp
,
model
=
{}):
"""Return True if the propositional logic expression is true in the model,
and False if it is false. If the model does not specify the value for
every proposition, this may return None to indicate 'not obvious';
this may happen even when the expression is tautological."""
op
,
args
=
exp
.
op
,
exp
.
args
if
exp
==
TRUE
:
return
True
elif
exp
==
FALSE
:
return
False
elif
is_prop_symbol
(
op
):
return
model
.
get
(
exp
)
elif
op
==
'~'
:
p
=
pl_true
(
args
[
0
],
model
)
if
p
==
None
:
return
None
else
:
return
not
p
elif
op
==
'|'
:
result
=
False
for
arg
in
args
:
p
=
pl_true
(
arg
,
model
)
if
p
==
True
:
return
True
if
p
==
None
:
result
=
None
return
result
elif
op
==
'&'
:
result
=
True
for
arg
in
args
:
p
=
pl_true
(
arg
,
model
)
if
p
==
False
:
return
False
if
p
==
None
:
result
=
None
return
result
p
,
q
=
args
if
op
==
'>>'
:
return
pl_true
(
~
p
|
q
,
model
)
elif
op
==
'<<'
:
return
pl_true
(
p
|
~
q
,
model
)
pt
=
pl_true
(
p
,
model
)
if
pt
==
None
:
return
None
qt
=
pl_true
(
q
,
model
)
if
qt
==
None
:
return
None
if
op
==
'<=>'
:
return
pt
==
qt
elif
op
==
'^'
:
return
pt
!=
qt
else
:
raise
ValueError
,
"illegal operator in logic expression"
+
str
(
exp
)
#______________________________________________________________________________
## Convert to Conjunctive Normal Form (CNF)
def
to_cnf
(
s
):
"""Convert a propositional logical sentence s to conjunctive normal form.
That is, of the form ((A | ~B | ...) & (B | C | ...) & ...) [p. 215]
>>> to_cnf("~(B|C)")
(~B & ~C)
>>> to_cnf("B <=> (P1|P2)")
((~P1 | B) & (~P2 | B) & (P1 | P2 | ~B))
>>> to_cnf("a | (b & c) | d")
((b | a | d) & (c | a | d))
>>> to_cnf("A & (B | (D & E))")
(A & (D | B) & (E | B))
WARNING: Passes through expr(), which uses eval() - Do not use with
unsanitized inputs!
"""
if
isinstance
(
s
,
str
):
s
=
expr
(
s
)
s
=
eliminate_implications
(
s
)
# Steps 1, 2 from p. 215
s
=
move_not_inwards
(
s
)
# Step 3
return
distribute_and_over_or
(
s
)
# Step 4
def
eliminate_implications
(
s
):
"""Change >>, <<, and <=> into &, |, and ~. That is, return an Expr
that is equivalent to s, but has only &, |, and ~ as logical operators.
>>> eliminate_implications(A >> (~B << C))
((~B | ~C) | ~A)
"""
if
not
s
.
args
or
is_symbol
(
s
.
op
):
return
s
## (Atoms are unchanged.)
args
=
map
(
eliminate_implications
,
s
.
args
)
a
,
b
=
args
[
0
],
args
[
-
1
]
if
s
.
op
==
'>>'
:
return
(
b
|
~
a
)
elif
s
.
op
==
'<<'
:
return
(
a
|
~
b
)
elif
s
.
op
==
'<=>'
:
return
(
a
|
~
b
)
&
(
b
|
~
a
)
else
:
return
Expr
(
s
.
op
,
*
args
)
def
move_not_inwards
(
s
):
"""Rewrite sentence s by moving negation sign inward.
>>> move_not_inwards(~(A | B))
(~A & ~B)
>>> move_not_inwards(~(A & B))
(~A | ~B)
>>> move_not_inwards(~(~(A | ~B) | ~~C))
((A | ~B) & ~C)
"""
if
s
.
op
==
'~'
:
NOT
=
lambda
b
:
move_not_inwards
(
~
b
)
a
=
s
.
args
[
0
]
if
a
.
op
==
'~'
:
return
move_not_inwards
(
a
.
args
[
0
])
# ~~A ==> A
if
a
.
op
==
'&'
:
return
NaryExpr
(
'|'
,
*
map
(
NOT
,
a
.
args
))
if
a
.
op
==
'|'
:
return
NaryExpr
(
'&'
,
*
map
(
NOT
,
a
.
args
))
return
s
elif
is_symbol
(
s
.
op
)
or
not
s
.
args
:
return
s
else
:
return
Expr
(
s
.
op
,
*
map
(
move_not_inwards
,
s
.
args
))
def
distribute_and_over_or
(
s
):
"""Given a sentence s consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in CNF.
>>> distribute_and_over_or((A & B) | C)
((A | C) & (B | C))
"""
if
s
.
op
==
'|'
:
s
=
NaryExpr
(
'|'
,
*
s
.
args
)
if
len
(
s
.
args
)
==
0
:
return
FALSE
if
len
(
s
.
args
)
==
1
:
return
distribute_and_over_or
(
s
.
args
[
0
])
conj
=
find_if
((
lambda
d
:
d
.
op
==
'&'
),
s
.
args
)
if
not
conj
:
return
NaryExpr
(
s
.
op
,
*
s
.
args
)
others
=
[
a
for
a
in
s
.
args
if
a
is
not
conj
]
if
len
(
others
)
==
1
:
rest
=
others
[
0
]
else
:
rest
=
NaryExpr
(
'|'
,
*
others
)
return
NaryExpr
(
'&'
,
*
map
(
distribute_and_over_or
,
[(
c
|
rest
)
for
c
in
conj
.
args
]))
elif
s
.
op
==
'&'
:
return
NaryExpr
(
'&'
,
*
map
(
distribute_and_over_or
,
s
.
args
))
else
:
return
s
_NaryExprTable
=
{
'&'
:
TRUE
,
'|'
:
FALSE
,
'+'
:
ZERO
,
'*'
:
ONE
}
def
NaryExpr
(
op
,
*
args
):
"""Create an Expr, but with an nary, associative op, so we can promote
nested instances of the same op up to the top level.
>>> NaryExpr('&', (A&B),(B|C),(B&C))
(A & B & (B | C) & B & C)
"""
arglist
=
[]
for
arg
in
args
:
if
arg
.
op
==
op
:
arglist
.
extend
(
arg
.
args
)
else
:
arglist
.
append
(
arg
)
if
len
(
args
)
==
1
:
return
args
[
0
]
elif
len
(
args
)
==
0
:
return
_NaryExprTable
[
op
]
else
:
return
Expr
(
op
,
*
arglist
)
def
conjuncts
(
s
):
"""Return a list of the conjuncts in the sentence s.
>>> conjuncts(A & B)
[A, B]
>>> conjuncts(A | B)
[(A | B)]
"""
if
isinstance
(
s
,
Expr
)
and
s
.
op
==
'&'
:
return
s
.
args
else
:
return
[
s
]
def
disjuncts
(
s
):
"""Return a list of the disjuncts in the sentence s.
>>> disjuncts(A | B)
[A, B]
>>> disjuncts(A & B)
[(A & B)]
"""
if
isinstance
(
s
,
Expr
)
and
s
.
op
==
'|'
:
return
s
.
args
else
:
return
[
s
]
#______________________________________________________________________________
# DPLL-Satisfiable [Fig. 7.16]
def
find_pure_symbol
(
symbols
,
unknown_clauses
):
"""Find a symbol and its value if it appears only as a positive literal
(or only as a negative) in clauses.
>>> find_pure_symbol([A, B, C], [A|~B,~B|~C,C|A])
(A, True)
"""
for
s
in
symbols
:
found_pos
,
found_neg
=
False
,
False
for
c
in
unknown_clauses
:
if
not
found_pos
and
s
in
disjuncts
(
c
):
found_pos
=
True
if
not
found_neg
and
~
s
in
disjuncts
(
c
):
found_neg
=
True
if
found_pos
!=
found_neg
:
return
s
,
found_pos
return
None
,
None
def
find_unit_clause
(
clauses
,
model
):
"""A unit clause has only 1 variable that is not bound in the model.
>>> find_unit_clause([A|B|C, B|~C, A|~B], {A:True})
(B, False)
"""
for
clause
in
clauses
:
num_not_in_model
=
0
for
literal
in
disjuncts
(
clause
):
sym
=
literal_symbol
(
literal
)
if
sym
not
in
model
:
num_not_in_model
+=
1
P
,
value
=
sym
,
(
literal
.
op
!=
'~'
)
if
num_not_in_model
==
1
:
return
P
,
value
return
None
,
None
def
literal_symbol
(
literal
):
"""The symbol in this literal (without the negation).
>>> literal_symbol(P)
P
>>> literal_symbol(~P)
P
"""
if
literal
.
op
==
'~'
:
return
literal
.
args
[
0
]
else
:
return
literal
#______________________________________________________________________________
def
is_variable
(
x
):
"A variable is an Expr with no args and a lowercase symbol as the op."
return
isinstance
(
x
,
Expr
)
and
not
x
.
args
and
is_var_symbol
(
x
.
op
)
def
occur_check
(
var
,
x
,
s
):
"""Return true if variable var occurs anywhere in x
(or in subst(s, x), if s has a binding for x)."""
if
var
==
x
:
return
True
elif
is_variable
(
x
)
and
s
.
has_key
(
x
):
return
occur_check
(
var
,
s
[
x
],
s
)
# fixed
# What else might x be? an Expr, a list, a string?
elif
isinstance
(
x
,
Expr
):
# Compare operator and arguments
return
(
occur_check
(
var
,
x
.
op
,
s
)
or
occur_check
(
var
,
x
.
args
,
s
))
elif
isinstance
(
x
,
list
)
and
x
!=
[]:
# Compare first and rest
return
(
occur_check
(
var
,
x
[
0
],
s
)
or
occur_check
(
var
,
x
[
1
:],
s
))
else
:
# A variable cannot occur in a string
return
False
#elif isinstance(x, Expr):
# return var.op == x.op or occur_check(var, x.args)
#elif not isinstance(x, str) and issequence(x):
# for xi in x:
# if occur_check(var, xi): return True
#return False
def
extend
(
s
,
var
,
val
):
"""Copy the substitution s and extend it by setting var to val;
return copy.
>>> ppsubst(extend({x: 1}, y, 2))
{x: 1, y: 2}
"""
s2
=
s
.
copy
()
s2
[
var
]
=
val
return
s2
def
subst
(
s
,
x
):
"""Substitute the substitution s into the expression x.
>>> subst({x: 42, y:0}, F(x) + y)
(F(42) + 0)
"""
if
isinstance
(
x
,
list
):
return
[
subst
(
s
,
xi
)
for
xi
in
x
]
elif
isinstance
(
x
,
tuple
):
return
tuple
([
subst
(
s
,
xi
)
for
xi
in
x
])
elif
not
isinstance
(
x
,
Expr
):
return
x
elif
is_var_symbol
(
x
.
op
):
return
s
.
get
(
x
,
x
)
else
:
return
Expr
(
x
.
op
,
*
[
subst
(
s
,
arg
)
for
arg
in
x
.
args
])
#______________________________________________________________________________
# Example application (not in the book).
# You can use the Expr class to do symbolic differentiation. This used to be
# a part of AI; now it is considered a separate field, Symbolic Algebra.
def
diff
(
y
,
x
):
"""Return the symbolic derivative, dy/dx, as an Expr.
However, you probably want to simplify the results with simp.
>>> diff(x * x, x)
((x * 1) + (x * 1))
>>> simp(diff(x * x, x))
(2 * x)
"""
if
y
==
x
:
return
ONE
elif
not
y
.
args
:
return
ZERO
else
:
u
,
op
,
v
=
y
.
args
[
0
],
y
.
op
,
y
.
args
[
-
1
]
if
op
==
'+'
:
return
diff
(
u
,
x
)
+
diff
(
v
,
x
)
elif
op
==
'-'
and
len
(
y
.
args
)
==
1
:
return
-
diff
(
u
,
x
)
elif
op
==
'-'
:
return
diff
(
u
,
x
)
-
diff
(
v
,
x
)
elif
op
==
'*'
:
return
u
*
diff
(
v
,
x
)
+
v
*
diff
(
u
,
x
)
elif
op
==
'/'
:
return
(
v
*
diff
(
u
,
x
)
-
u
*
diff
(
v
,
x
))
/
(
v
*
v
)
elif
op
==
'**'
and
isnumber
(
x
.
op
):
return
(
v
*
u
**
(
v
-
1
)
*
diff
(
u
,
x
))
elif
op
==
'**'
:
return
(
v
*
u
**
(
v
-
1
)
*
diff
(
u
,
x
)
+
u
**
v
*
Expr
(
'log'
)(
u
)
*
diff
(
v
,
x
))
elif
op
==
'log'
:
return
diff
(
u
,
x
)
/
u
else
:
raise
ValueError
(
"Unknown op:
%s
in diff(
%s
,
%s
)"
%
(
op
,
y
,
x
))
def
simp
(
x
):
if
not
x
.
args
:
return
x
args
=
map
(
simp
,
x
.
args
)
u
,
op
,
v
=
args
[
0
],
x
.
op
,
args
[
-
1
]
if
op
==
'+'
:
if
v
==
ZERO
:
return
u
if
u
==
ZERO
:
return
v
if
u
==
v
:
return
TWO
*
u
if
u
==
-
v
or
v
==
-
u
:
return
ZERO
elif
op
==
'-'
and
len
(
args
)
==
1
:
if
u
.
op
==
'-'
and
len
(
u
.
args
)
==
1
:
return
u
.
args
[
0
]
## --y ==> y
elif
op
==
'-'
:
if
v
==
ZERO
:
return
u
if
u
==
ZERO
:
return
-
v
if
u
==
v
:
return
ZERO
if
u
==
-
v
or
v
==
-
u
:
return
ZERO
elif
op
==
'*'
:
if
u
==
ZERO
or
v
==
ZERO
:
return
ZERO
if
u
==
ONE
:
return
v
if
v
==
ONE
:
return
u
if
u
==
v
:
return
u
**
2
elif
op
==
'/'
:
if
u
==
ZERO
:
return
ZERO
if
v
==
ZERO
:
return
Expr
(
'Undefined'
)
if
u
==
v
:
return
ONE
if
u
==
-
v
or
v
==
-
u
:
return
ZERO
elif
op
==
'**'
:
if
u
==
ZERO
:
return
ZERO
if
v
==
ZERO
:
return
ONE
if
u
==
ONE
:
return
ONE
if
v
==
ONE
:
return
u
elif
op
==
'log'
:
if
u
==
ONE
:
return
ZERO
else
:
raise
ValueError
(
"Unknown op: "
+
op
)
## If we fall through to here, we can not simplify further
return
Expr
(
op
,
*
args
)
#_______________________________________________________________________________
# Utilities for doctest cases
# These functions print their arguments in a standard order
# to compensate for the random order in the standard representation
def
pretty
(
x
):
t
=
type
(
x
)
if
t
==
dict
:
return
pretty_dict
(
x
)
elif
t
==
set
:
return
pretty_set
(
x
)
def
pretty_dict
(
ugly_dict
):
"""Print the dictionary ugly_dict.
Prints a string representation of the dictionary
with keys in sorted order according to their string
representation: {a: A, d: D, ...}.
>>> pretty_dict({'m': 'M', 'a': 'A', 'r': 'R', 'k': 'K'})
"{'a': 'A', 'k': 'K', 'm': 'M', 'r': 'R'}"
>>> pretty_dict({z: C, y: B, x: A})
'{x: A, y: B, z: C}'
"""
def
format
(
k
,
v
):
"""Return formatted key, value pairs."""
return
"
%s
:
%s
"
%
(
repr
(
k
),
repr
(
v
))
ugly_dictitems
=
ugly_dict
.
items
()
ugly_dictitems
.
sort
(
key
=
str
)
k
,
v
=
ugly_dictitems
[
0
]
ugly_dictpairs
=
format
(
k
,
v
)
for
(
k
,
v
)
in
ugly_dictitems
[
1
:]:
ugly_dictpairs
+=
(
', '
+
format
(
k
,
v
))
return
'{
%s
}'
%
ugly_dictpairs
def
pretty_set
(
s
):
"""Print the set s.
>>> pretty_set(set(['A', 'Q', 'F', 'K', 'Y', 'B']))
"set(['A', 'B', 'F', 'K', 'Q', 'Y'])"
>>> pretty_set(set([z, y, x]))
'set([x, y, z])'
"""
slist
=
list
(
s
)
slist
.
sort
(
key
=
str
)
return
'set(
%s
)'
%
slist
def
pp
(
x
):
print
pretty
(
x
)
def
ppsubst
(
s
):
"""Pretty-print substitution s"""
ppdict
(
s
)
def
ppdict
(
d
):
print
pretty_dict
(
d
)
def
ppset
(
s
):
print
pretty_set
(
s
)
Event Timeline
Log In to Comment