Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120756117
sbcharsetprober.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jul 6, 19:46
Size
4 KB
Mime Type
text/x-python
Expires
Tue, Jul 8, 19:46 (2 d)
Engine
blob
Format
Raw Data
Handle
27229359
Attached To
R3852 EMS for Smart-Building
sbcharsetprober.py
View Options
######################## BEGIN LICENSE BLOCK ########################
# The Original Code is Mozilla Universal charset detector code.
#
# The Initial Developer of the Original Code is
# Netscape Communications Corporation.
# Portions created by the Initial Developer are Copyright (C) 2001
# the Initial Developer. All Rights Reserved.
#
# Contributor(s):
# Mark Pilgrim - port to Python
# Shy Shalom - original C code
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
# 02110-1301 USA
######################### END LICENSE BLOCK #########################
import
sys
from
.
import
constants
from
.charsetprober
import
CharSetProber
from
.compat
import
wrap_ord
SAMPLE_SIZE
=
64
SB_ENOUGH_REL_THRESHOLD
=
1024
POSITIVE_SHORTCUT_THRESHOLD
=
0.95
NEGATIVE_SHORTCUT_THRESHOLD
=
0.05
SYMBOL_CAT_ORDER
=
250
NUMBER_OF_SEQ_CAT
=
4
POSITIVE_CAT
=
NUMBER_OF_SEQ_CAT
-
1
#NEGATIVE_CAT = 0
class
SingleByteCharSetProber
(
CharSetProber
):
def
__init__
(
self
,
model
,
reversed
=
False
,
nameProber
=
None
):
CharSetProber
.
__init__
(
self
)
self
.
_mModel
=
model
# TRUE if we need to reverse every pair in the model lookup
self
.
_mReversed
=
reversed
# Optional auxiliary prober for name decision
self
.
_mNameProber
=
nameProber
self
.
reset
()
def
reset
(
self
):
CharSetProber
.
reset
(
self
)
# char order of last character
self
.
_mLastOrder
=
255
self
.
_mSeqCounters
=
[
0
]
*
NUMBER_OF_SEQ_CAT
self
.
_mTotalSeqs
=
0
self
.
_mTotalChar
=
0
# characters that fall in our sampling range
self
.
_mFreqChar
=
0
def
get_charset_name
(
self
):
if
self
.
_mNameProber
:
return
self
.
_mNameProber
.
get_charset_name
()
else
:
return
self
.
_mModel
[
'charsetName'
]
def
feed
(
self
,
aBuf
):
if
not
self
.
_mModel
[
'keepEnglishLetter'
]:
aBuf
=
self
.
filter_without_english_letters
(
aBuf
)
aLen
=
len
(
aBuf
)
if
not
aLen
:
return
self
.
get_state
()
for
c
in
aBuf
:
order
=
self
.
_mModel
[
'charToOrderMap'
][
wrap_ord
(
c
)]
if
order
<
SYMBOL_CAT_ORDER
:
self
.
_mTotalChar
+=
1
if
order
<
SAMPLE_SIZE
:
self
.
_mFreqChar
+=
1
if
self
.
_mLastOrder
<
SAMPLE_SIZE
:
self
.
_mTotalSeqs
+=
1
if
not
self
.
_mReversed
:
i
=
(
self
.
_mLastOrder
*
SAMPLE_SIZE
)
+
order
model
=
self
.
_mModel
[
'precedenceMatrix'
][
i
]
else
:
# reverse the order of the letters in the lookup
i
=
(
order
*
SAMPLE_SIZE
)
+
self
.
_mLastOrder
model
=
self
.
_mModel
[
'precedenceMatrix'
][
i
]
self
.
_mSeqCounters
[
model
]
+=
1
self
.
_mLastOrder
=
order
if
self
.
get_state
()
==
constants
.
eDetecting
:
if
self
.
_mTotalSeqs
>
SB_ENOUGH_REL_THRESHOLD
:
cf
=
self
.
get_confidence
()
if
cf
>
POSITIVE_SHORTCUT_THRESHOLD
:
if
constants
.
_debug
:
sys
.
stderr
.
write
(
'
%s
confidence =
%s
, we have a'
'winner
\n
'
%
(
self
.
_mModel
[
'charsetName'
],
cf
))
self
.
_mState
=
constants
.
eFoundIt
elif
cf
<
NEGATIVE_SHORTCUT_THRESHOLD
:
if
constants
.
_debug
:
sys
.
stderr
.
write
(
'
%s
confidence =
%s
, below negative'
'shortcut threshhold
%s
\n
'
%
(
self
.
_mModel
[
'charsetName'
],
cf
,
NEGATIVE_SHORTCUT_THRESHOLD
))
self
.
_mState
=
constants
.
eNotMe
return
self
.
get_state
()
def
get_confidence
(
self
):
r
=
0.01
if
self
.
_mTotalSeqs
>
0
:
r
=
((
1.0
*
self
.
_mSeqCounters
[
POSITIVE_CAT
])
/
self
.
_mTotalSeqs
/
self
.
_mModel
[
'mTypicalPositiveRatio'
])
r
=
r
*
self
.
_mFreqChar
/
self
.
_mTotalChar
if
r
>=
1.0
:
r
=
0.99
return
r
Event Timeline
Log In to Comment