Scalable Parallel Spin-image Generation Using Dynamic Loop Scheduling

Ahmed Eleliemy, Ali Mohammed, and Florina M. Ciorba
Department of Mathematics and Computer Science
University of Basel, Switzerland
Email: {ahmed.eleliemy, ali.mohammed, florina.ciorba}@unibas.ch

June 16, 2017

Algorithm 1: The proposed APSIA master perspective

```
1 generatingSpinImages (OF, W, B, S, N, DM)
  Inputs: OF: location of the input data, W: image width, B: bin size,
            S: support angle, N: number of generated spin-images,
            DM: DLS technique
   Output: spinImages: list of generated spin images
oldsymbol{2} OP = read3DPoints(OF)
\mathbf{3} scheduled Tasks = 0
4 schedulingStep = 0
\mathbf{5} received Results = 0
6 startEnd[2]
7 workersCount = getCountOfWorkers()
8 sendToWorkers(OP)
  while scheduledTasks < N do
      requestWork = receiveRequestAnyWorker()
10
      worker = getSourceOfRequest(requestWork)
11
      chunk = getChunk(DM, schedulingStep, N, workersCount)
12
      startEnd[0] = scheduledTasks
13
      startEnd[1] = scheduledTasks + chunk
14
15
      sendResponse(worker, startEnd, assignWork)
      scheduledTasks = scheduledTasks + chunk
16
17 end
18 while receivedResults < workersCount do
      request = receiveRequestFromAnyWorker()
19
      requestType = getRequestType(request)
20
      worker = getSourceOfRequest(request)
21
      if requestType = assignWork then
22
         sendResponseToWorker(worker, NULL, terminate)
23
      else
24
         receiveDataFromWorker(worker, tempSpinImages)
25
         add(spinImages, tempSpinImages)
26
         receivedResults++
27
      end
28
29 end
```

Algorithm 2: The proposed APSIA worker perspective

```
1 generatingSpinImages (OF, W, B, S, DM)
  Inputs: OF: location of the input data, W: image width, B: bin size,
             S: support angle, DM: DLS technique
   Output: spinImages: list of generated spin images
2 receiveFromMaster(OP)
\mathbf{3} \ \mathrm{M} = \mathrm{getLength}(\mathrm{OP})
4 startEnd[2]
5 sendRequest(assignWork)
6 response = receiveResponseFromMaster()
\tau spinImages = createSpinImagesList(M)
\mathbf{8} while response = assignWork do
      startEnd = getResponseData(response)
9
      /* as shown in Algorithm 2 */
10
      adCalculateSpinImages(W, B, S, OP, M, spinImages, startEnd[0],
11
      startEnd[1]
12 end
13 sendDataToMaster(spinImages)
```