
Working with Containers
Please open this in your browser to follow along:

https://goo.gl/hhkKSP

v.2.1 (2019-09-10)

1 / 85

Agenda
1. The problem we're solving
2. Virtual machines vs containers
3. Docker vs Singularity
4. Installing and testing Singularity
5. Creating and working with containers
6. Writing a Singularity definition file
7. Using host resources
8. Distributing Singularity containers
9. Cloud resources

10. Docker <-> Singularity interoperability
11. Extra credits (if time allows)

2 / 85

The problem we're solving

3 / 85

Problem (for developers)
Suppose you're writing some software.
It works great on your machine.

However, eventually it has to leave your machine: has to run
on your colleague's machine, or deployed in its production
environment.

It can be a completely different flavour of OS, with a different
set of libraries and supporting tools.

It can be difficult to test if you accounted for all those
variations on your own development system.
You may have things in your environment you're not even
aware of that make a difference.

Your users could also be less technically inclined to deal with
dependencies. You may wish to decrease this friction.

4 / 85

Problem (for users)
Suppose you want to run some piece of software.

First off, you really would like some sort of turn-key solution.
Of course there's none, there's only the source code.

The build instuctions indicate 5-years-old out of date libraries
on top of a similarly old OS distribution.

And no, the original developer is most certainly no longer
available.

You also don't trust this software fully not to mess up your OS.

Or, you want to run it on a remote server for which you don't
even have the privileges to comfortably install all the
dependencies.

5 / 85

Problem (for researchers)
Suppose you have a piece of scientific software you used to
obtain some result.

Then someone half across the globe tries to reproduce it, and
can't get it to run, or worse - is getting different results for the
same inputs. What is to blame?

Or, even simpler: your group tries to use your software a
couple of years after you left, and nobody can get it to work.

For a reproducible way to do science with the help of
software, packaging just the source code might not be enough;
the environment should also be predictable.

6 / 85

Problem (for server administrators)
Suppose you have a hundred of users, each requesting certain
software.

Some of it needs to be carefully built from scratch, as there are
no prebuilt packages.

Some of the software works with mutually-incompatible
library versions. Possibly even known-insecure ones.

Any such software change has to be injected in a scheduled
maintenance window, but users want it yesterday.

And finally, you most certainly don't trust any of this software
not to mess up your OS. From experience.

7 / 85

What would be a solution?
A turnkey solution

A recipe that can build a working instance of your
software, reliably and fast.

BYOE: Bring Your Own Environment

A way to capture the prerequisites and environment
together with the software.

Mitigate security risks

Provide a measure of isolation between the software
running on a system. No security is perfect, but some is
better than none.

8 / 85

The Solution(s)

9 / 85

Solution: Virtual Machines?
A virtual machine is an isolated instance of a whole other
"guest" OS running under your "host" OS.

A hypervisor is responsible for handling the situations where
this isolation causes issues for the guest.

From the point of view of the guest, it runs under its own,
dedicated hardware. Hence, it's called hardware-level
virtualization.

Most* guest/host OS combinations can run: you can run
Windows on Linux, Linux on Windows, etc.

* MacOS being a complicated case due to licensing.

10 / 85

Virtual Machines: the good parts
The BYOE principle is fully realized

Whatever your environment is, you can package it fully,
OS and everything.

Security risks are truly minimized

Very narrow and secured bridge between the guest and the
host means little opportunity for a bad actor to break out
of isolation

Easy to precisely measure out resources

The contained application, together with its OS, has
restricted access to hardware: you measure out its disk,
memory and alotted CPU.

11 / 85

Virtual Machines: the not so good parts
Operational overhead

For every piece of software, the full underlying OS has to
be run, and corresponding resources allocated.

Setup overhead

Starting and stopping a virtual machine is not very fast,
and/or requires saving its state.

Changing the allocated resources can be hard too.

Hardware availability

The isolation between the host and the guest can hinder
access to specialized hardware on the host system.

12 / 85

Solution: Containers (on Linux)?
If your software expects Linux, there's a more direct and
lightweight way to reach similar goals.

Recent kernel advances allow to isolate processes from the
rest of the system, presenting them with their own view of the
system.

You can package entire other Linux distributions, and with the
exception of the host kernel, all the environment can be
different for the process.

From the point of view of the application, it's running on the
same hardware as the host, hence containers are sometimes
called operating system level virtualization.

13 / 85

Containers: the good parts
Lower operational overhead

You don't need to run a whole second OS to run an
application.

Lower startup overhead

Setup and teardown of a container is much less costly.

More hardware flexibility

You don't have to dedicate a set portion of memory to your
VM well in advance, or contain your files in a fixed-size
filesystem.

Also, the level of isolation is up to you. You may present
devices on the system directly to containers if needed.

14 / 85

Containers: the not so good parts
Kernel compatibility

Kernel is shared between the host and the container, so
there may be some incompatibilties.

Plus, container support is (relatively) new, so it needs a
recent kernel on the host.

Security concerns

The isolation is thinner than in VM case, and kernel of the
host OS is directly exposed.

Linux on Linux

Containers are inherently a Linux technology. You need a
Linux host (or a Linux VM) to run containers, and only
Linux software can run.

15 / 85

History of containers
The idea of running an application in a different environment
is not new to UNIX-like systems.

Perhaps the first effort in that direction is the chroot command
and concept (1982): presenting applications with a different
view of the filesystem (a different root directory /).

This minimal isolation was improved in in FreeBSD with jail
(2000), separating other resources (processes, users) and
restricting how applications can interact with each other and
the kernel.

Linux developed facilities for isolating and controlling access
to some processes with namespaces (2002) and cgroups (2007).

Those facilities led to creation of solutions for
containerization, notably LXC (2008), Docker (2013) and
Singularity (2016).

16 / 85

Docker vs Singularity
Why did another technology emerge?

17 / 85

Docker
Docker came about in 2013 and since has been on a
meteoric rise as the golden standard for containerization
technology.

A huge amount of tools is built around Docker to build,
run, orchestrate and integrate Docker containers.

Many cloud service providers can directly integrate
Docker containers. Docker claims x26 resource efficiency
improvement at cloud scale.

Docker encourages splitting software into microservice
chunks that can be portably used as needed.

18 / 85

Docker concerns
Docker uses a pretty complicated model of
images/volumes/metadata, orchestrating swarms of those
containers to work together, and it not always very
transparent with how those are stored.

Also, isolation features require superuser privileges;
Docker has a persistent daemon running with those
privileges and many container operations require root as
well.

19 / 85

Docker concerns
Docker uses a pretty complicated model of
images/volumes/metadata, orchestrating swarms of those
containers to work together, and it not always very
transparent with how those are stored.

Also, isolation features require superuser privileges;
Docker has a persistent daemon running with those
privileges and many container operations require root as
well.

Both of those issues make Docker undesirable in applications
where you don't wholly own the computing resource - HPC
environments.

Out of those concerns, and out of scientific community, came
Singularity.

19 / 85

Singularity
Singularity was created in 2016 as an HPC-friendly alternative
to Docker. It is still in rapid development.

20 / 85

Singularity
Singularity was created in 2016 as an HPC-friendly alternative
to Docker. It is still in rapid development.

It's usually straightforward to convert a Docker container
to a Singularity image.

This gives users access to a vast library of containers.

20 / 85

Singularity
Singularity was created in 2016 as an HPC-friendly alternative
to Docker. It is still in rapid development.

It's usually straightforward to convert a Docker container
to a Singularity image.

This gives users access to a vast library of containers.

Singularity uses a monolithic, image-file based approach.
Instead of dynamically overlaid layers.

You build a single file on one system and simply copy it
over or archive it.

This addresses the "complex storage" issue with Docker.

20 / 85

Singularity and root privileges
The privilege problem was a concern from the ground-up, to
make Singularity acceptable for academic clusters.

21 / 85

Singularity and root privileges
The privilege problem was a concern from the ground-up, to
make Singularity acceptable for academic clusters.

Addressed by having a setuid-enabled binary that can
accomplish container startup and drop privileges ASAP.

21 / 85

Singularity and root privileges
The privilege problem was a concern from the ground-up, to
make Singularity acceptable for academic clusters.

Addressed by having a setuid-enabled binary that can
accomplish container startup and drop privileges ASAP.

Privilege elevation inside a container is impossible: setuid
mechanism is disabled inside the container, so to be root
inside, you have to be root outside.

21 / 85

Singularity and root privileges
The privilege problem was a concern from the ground-up, to
make Singularity acceptable for academic clusters.

Addressed by having a setuid-enabled binary that can
accomplish container startup and drop privileges ASAP.

Privilege elevation inside a container is impossible: setuid
mechanism is disabled inside the container, so to be root
inside, you have to be root outside.

Users don't need explicit root access to operate containers
(at least after the initial build).

21 / 85

Singularity and HPC
Thanks to the above improvements over Docker, HPC cluster
operators are much more welcoming to the idea of Singularity
support.

As a result of a joint Pipeline Interoperability project between
Swiss Science IT groups, the UniBE Linux cluser UBELIX
started to support Singularity.

Once your software is packaged in Singularity, it should work
across all Science IT platforms supporting the technology.

22 / 85

Singularity niche
When is Singularity useful over Docker?

The major use case was and still is shared systems:
systems where unprivileged users need the ability to run
containers.

However, an admin still needs to install Singularity for it to
function.

Singularity is useful as an alternative to Docker. If you
have admin privileges on the host, Singularity can do more
than in unprivileged mode.

It doesn't have the same level of ecosystem around it, but
currently gaining features such as OCI runtime interface,
native Kubernetes integration and own cloud services.

23 / 85

Singularity "sales pitch"
Quoting from Singularity Admin documentation:

Untrusted users (those who don’t have root access and
aren’t getting it) can run untrusted containers (those that
have not been vetted by admins) safely.

This won over quite a few academic users; for a sampling:

https://www.sylabs.io/singularity/whos-using-singularity/

24 / 85

https://www.sylabs.io/singularity/whos-using-singularity/

Singularity work�ow

1. Interactively develop steps to construct a container.
2. Describe the steps in a recipe.
3. Build an immutable container on own machine.
4. Deploy this container in the production environment.

25 / 85

Working with Singularity
Installation and basic use

26 / 85

Singularity versions
There are two major branches of Singularity:

2.x branch (currently at 2.6.1): legacy branch with no
active development, but still deployed in places.

3.x branch (currently at 3.4.0): actively developed branch,
with most of the code completely rewritten in Go.

27 / 85

Singularity versions
There are two major branches of Singularity:

2.x branch (currently at 2.6.1): legacy branch with no
active development, but still deployed in places.

3.x branch (currently at 3.4.0): actively developed branch,
with most of the code completely rewritten in Go.

Due to freshness of code and new Go dependency, 3.x
adoption is slow. This course will cover 3.2.1 release (for
UBELIX compatibility).

27 / 85

Singularity versions
There are two major branches of Singularity:

2.x branch (currently at 2.6.1): legacy branch with no
active development, but still deployed in places.

3.x branch (currently at 3.4.0): actively developed branch,
with most of the code completely rewritten in Go.

Due to freshness of code and new Go dependency, 3.x
adoption is slow. This course will cover 3.2.1 release (for
UBELIX compatibility).

Singularity aims to be backwards-compatible: containers built
with earlier versions should work with newer ones.

27 / 85

Installing Singularity
Installing Singularity from source is probably preferred, as it's
still a relatively new piece of software.

28 / 85

Installing Singularity
Installing Singularity from source is probably preferred, as it's
still a relatively new piece of software.

Instructions at: https://sylabs.io/guides/3.2/user-
guide/installation.html#install-on-linux

It is required to install Golang compiler >= 1.11.1 as a build
dependency. It is not required to run the compiled software.

On Ubuntu, Go can be installed with

sudo snap install --classic go

Exercise:

If you want to try installing Singularity on your Linux
system, follow the build instructions.

If you're using the remote training machine, skip this step.
28 / 85

https://sylabs.io/guides/3.2/user-guide/installation.html#install-on-linux

Using Singularity
If you followed build instructions, you should now have
singularity available from the shell.

user@host:~$ singularity --version
singularity version 3.2.1-1

29 / 85

Using Singularity
If you followed build instructions, you should now have
singularity available from the shell.

user@host:~$ singularity --version
singularity version 3.2.1-1

The general format of Singularity commands is:

singularity [<global flags>] <command> [<command flags>] [<arguments>]

Singularity is pretty sensitive to the order of those.

Use singularity help [<command>] to check built-in help.

You can find the configuration of Singularity under
/usr/local/etc/singularity if you used the default prefixes.

29 / 85

Container images
A Singularity image is, for practical purposes, a filesystem tree
that will be presented to the applications running inside it.

30 / 85

Container images
A Singularity image is, for practical purposes, a filesystem tree
that will be presented to the applications running inside it.

A Docker container is built with a series of layers that are
stacked upon each other to form the filesystem. Layers are
collections of updates to files, and must be inspected to find
the latest version of the file.

Singularity collapses those into a single, portable file.

30 / 85

Container images
A Singularity image is, for practical purposes, a filesystem tree
that will be presented to the applications running inside it.

A Docker container is built with a series of layers that are
stacked upon each other to form the filesystem. Layers are
collections of updates to files, and must be inspected to find
the latest version of the file.

Singularity collapses those into a single, portable file.

A container needs to be somehow bootstrapped to contain a
base operating system before further modifications can be
made.

30 / 85

Pulling Docker images
The simplest way of obtaining a working Singularity image is
to pull it from either Docker Hub or Singularity Hub.

Let's try it with CentOS 6:

user@host:~$ singularity pull docker://centos:6

This will download the layers of the Docker container to your
machine and assemble them into an image.

The result will be stored as centos_6.sif

31 / 85

Pulling Docker images

Note that this does not require sudo or Docker!

Exercise:

Pull the CentOS 6 image from Dockerhub with the above
command

user@host:~$ singularity pull docker://centos:6
INFO: Starting build...
Getting image source signatures
Skipping fetch of repeat blob sha256:ff50d722b38227ec8f2bbf0cdbce428b66745077c1
Copying config sha256:5d1ece75fd80b4dd0e4b2d78a1cfebbabad9eb3b5bf48c4e1ba7f9dd2
 1.51 KiB / 1.51 KiB [==] 0
Writing manifest to image destination
Storing signatures
INFO: Creating SIF file...
INFO: Build complete: centos_6.sif

32 / 85

Entering shell in the container
To test our freshly-created container, we can invoke an
interactive shell to explore it with shell:

user@host:~$ singularity shell centos_6.sif
Singularity centos_6.sif:~>

At this point, you're within the environment of the container.

We can verify we're "running" CentOS:

Singularity centos_6.sif:~> cat /etc/centos-release
CentOS release 6.10 (Final)

33 / 85

User/group within the container
Inside the container, we are the same user:

Singularity centos_6.sif:~> whoami
user
Singularity centos_6.sif:~> exit
user@host:~$ whoami
user

We will also have the same groups.

That way, if any host resources are mounted in the container,
we'll have the same access privileges.

34 / 85

Root within the container
If we launched singularity with sudo, we would be root inside
the container.

user@host:~$ sudo singularity shell centos_6.sif
Singularity centos_6.sif:/home/user> whoami
root

35 / 85

Root within the container
If we launched singularity with sudo, we would be root inside
the container.

user@host:~$ sudo singularity shell centos_6.sif
Singularity centos_6.sif:/home/user> whoami
root

Most importantly: setuid mechanism will not work within
the container. Once launched as non-root, no command can
elevate your privileges.

35 / 85

Default mounts
In addition to the container filesystem, by default:

user's home folder,
/tmp,
/dev,
the folder we've invoked Singularity from

are accessible inside the container.

36 / 85

Default mounts
In addition to the container filesystem, by default:

user's home folder,
/tmp,
/dev,
the folder we've invoked Singularity from

are accessible inside the container.

The idea is to provide minimal friction working with software
inside the container: no need for extra mounts to access data
or store preferences.

It is possible to override this default behavior.

36 / 85

Default mounts
user@host:~$ singularity shell centos_6.sif
Singularity centos_6.sif:~> ls ~
[..lists home folder..]
Singularity centos_6.sif:~> touch ~/test_container
Singularity centos_6.sif:~> exit
user@host:~$ ls ~/test_container
/home/user/test_container

The current working directory inside the container is the same
as outside at launch time.

37 / 85

Running a command directly
Besides the interactive shell, we can execute any command
inside the container directly with exec:

user@host:~$ singularity exec centos_6.sif cat /etc/centos-release
CentOS release 6.10 (Final)

Exercise:

Invoke the python interpreter with exec.

Compare the version with the host system.

38 / 85

Modifying containers
Let's make our own

39 / 85

Modifying the container
Let's try to install some software in the container.

user@host:~$ singularity shell centos_6.sif
Singularity centos_6.sif:~> fortune
bash: fortune: command not found

fortune is not part of the base image. Let's try installing it.

40 / 85

Modifying the container
Let's try to install some software in the container.

user@host:~$ singularity shell centos_6.sif
Singularity centos_6.sif:~> fortune
bash: fortune: command not found

fortune is not part of the base image. Let's try installing it.

Singularity centos_6.sif:~> exit
user@host:~$ sudo singularity shell centos_6.sif
Singularity centos_6.sif:~> whoami
root
Singularity centos_6.sif:~> yum -y --enablerepo=extras install epel-release
[...]
[Errno 30] Read-only file system: '/var/lib/rpm/.rpm.lock'
[...]
^C

Despite having root, we can't write to the filesystem.

40 / 85

Images and overlays
Singularity image files are read-only squashfs filesystems.

Singularity can use an overlay: a layer on top of the image
that holds changes to it.

41 / 85

Images and overlays
Singularity image files are read-only squashfs filesystems.

Singularity can use an overlay: a layer on top of the image
that holds changes to it.

Overlays can be persistent (stored in a folder) or temporary.
Singularity 2.x uses a temporary overlay by default.

user@host:~$ sudo singularity shell --writable-tmpfs centos_6.sif
Singularity centos_6.sif:~> touch /test
Singularity centos_6.sif:~> ls /test
/test

user@host:~$ mkdir persistent_overlay
user@host:~$ sudo singularity shell --overlay persistent_overlay centos_6.sif
Singularity centos_6.sif:~> touch /test
Singularity centos_6.sif:~> ls /test
/test

41 / 85

Sandbox containers
A more conventional way to write to a container is to use
sandbox format, which is just a filesystem tree stored in a
folder.

$ sudo singularity build --sandbox centos-writable docker://centos:6
$ ls centos-writable/
bin dev environment etc home lib lib64 lost+found media mnt opt
proc root sbin selinux singularity srv sys tmp usr var

Building sandbox containers requires root.

42 / 85

Sandbox containers
A more conventional way to write to a container is to use
sandbox format, which is just a filesystem tree stored in a
folder.

$ sudo singularity build --sandbox centos-writable docker://centos:6
$ ls centos-writable/
bin dev environment etc home lib lib64 lost+found media mnt opt
proc root sbin selinux singularity srv sys tmp usr var

Building sandbox containers requires root.

Passing --writable to shell or exec will now enable changes:

$ sudo singularity shell --writable centos-writable
Singularity centos-writable:~> touch /test
Singularity centos-writable:~> ls /test
/test
Singularity centos-writable:~> exit
$ ls centos-writable/test
centos-writable/test

42 / 85

Writing to a container, �nally:
We should now be able to enter it in writable mode and
install software:

user@host:~$ sudo singularity shell --writable centos-writable
Singularity centos-writable:~> yum -y --enablerepo=extras install epel-release
[...]
Singularity centos-writable:~> yum -y install fortune-mod
[...]
Singularity centos-writable:~> exit
user@host:~$ singularity exec centos-writable fortune
[some long-awaited wisdom of a fortune cookie]

43 / 85

Default run script
A container can have a "default" command which is run
without specifying it.

Inside the container, it's /singularity. Let's try modifying it:

user@host:~$ sudo nano centos-writable/singularity

By default you'll see a sizeable shell script.

#!/bin/sh
OCI_ENTRYPOINT=''
OCI_CMD='"/bin/bash"'
CMDLINE_ARGS=""
[...]

44 / 85

Custom run script
We installed fortune, so let's use that instead:

#!/bin/sh

exec /usr/bin/fortune "$@"

Now we can invoke it with run:

user@host:~$ singularity run centos-writable
[..some wisdom or humor..]

45 / 85

Converting to �nal container
One way to produce a "final" container is to convert it from
the sandbox version:

user@host:~$ sudo singularity build fortune.sif centos-writable
[...]

Now we can test our container:

user@host:~$ singularity run fortune.sif
[..some more wisdom..]

46 / 85

Running a container directly
Note that the container file is executable:

user@host:~$ ls -lh fortune.sif
-rwxr-xr-x 1 root root 99M Feb 30 13:37 fortune.sif

If we run it directly, it's the same as invoking run:

user@host:~$./fortune.sif
[..a cracking joke..]

This does require to have singularity installed on the host,
however, and is just a convenience.

47 / 85

Container de�nition �les
Making the container reproducible

48 / 85

Making the container reproducible
Instead of taking some base image and making changes to it
by hand, we want to make this build process reproducible.

This is achieved with definition files called Definition files,
historically also called "recipes".

Let's try to retrace out steps to obtain a fortune-telling CentOS.

Exercise:

Open a file called fortune.def in an editor, and prepare to
copy along.

49 / 85

Bootstrapping
The definition file starts with a header section.

The key part of it is the Bootstrap: configuration, which
defines how we obtain the "base" image.

There are multiple types of bootstrap methods:

pull an image from a cloud service such as docker
using yum/debootstrap on the host system to bootstrap a
similar one
localimage to base off another image on your computer

We'll be using the Docker method.

Bootstrap: docker
From: centos:6

50 / 85

Setting up the container
There are 2 sections for setup commands (essentially shell
scripts):

1. %setup for commands to be executed outside the
container.

You can use $SINGULARITY_ROOTFS to access the container's
filesystem, as it is mounted on the host during the build.

2. %post for commands to be executed inside the container.

This is a good place to set up the OS, such as installing
packages.

51 / 85

Setting up the container
Let's save the name of the build host and install fortune:

Bootstrap: docker
From: centos:6

%setup
 hostname -f > $SINGULARITY_ROOTFS/etc/build_host

%post
 yum -y --enablerepo=extras install epel-release
 yum -y install fortune-mod
 yum clean all

52 / 85

Adding �les to the container
An additional section, %files, allows to copy files or folders to
the container.

We won't be using it here, but the format is very similar to cp,
with sources being outside and the final destination being
inside the container:

%files
 some/file /some/other/file some/path/
 some/directory some/path/

Note that this happens after %post. If you need the files earlier,
copy them manually in %setup.

53 / 85

Setting up the environment
You can specify a script to be sourced when something is run
in the container.

This goes to the %environment section. Treat it like
.bash_profile.

%environment
 export HELLO=World

Note that by defaut, the host environment variables are
passed to the container.

To disable it, use -e when running the container.

54 / 85

Setting up the runscript
The runscript (/singularity) is specified in the %runscript
section.

Let's use the file we copied at %setup and run fortune:

%runscript
 read host < /etc/build_host
 echo "Hello, $HELLO! Fortune Teller, built by $host"
 exec /usr/bin/fortune "$@"

55 / 85

Testing the built image
You can specify commands to be run at the end of the build
process inside the container to perform sanity checks.

Use %test section for this:

%test
 test -f /etc/build_host
 test -x /usr/bin/fortune

All commands must return successfully or the build will fail.

56 / 85

The whole de�nition �le
Bootstrap: docker
From: centos:6

%setup
 hostname -f > $SINGULARITY_ROOTFS/etc/build_host
%post
 yum -y --enablerepo=extras install epel-release
 yum -y install fortune-mod
 yum clean all
%environment
 export HELLO="World"
%runscript
 read host < /etc/build_host
 echo "Hello, $HELLO! Fortune Teller, built by $host"
 exec /usr/bin/fortune "$@"
%test
 test -f /etc/build_host
 test -x /usr/bin/fortune

Exercise:

Check that your fortune.def is the same as above.

57 / 85

Building a container from de�nition
To fill a container using a definition file, we invoke build:

user@host:~$ rm fortune.sif
user@host:~$ sudo singularity build fortune.sif fortune.def
[...]

Exercise:

1. Bootstrap the image as shown above.

2. Test running it directly.

58 / 85

Inspecting a built container
Container has some metadata you can read:

user@host:~$ singularity inspect fortune.sif
==labels==
org.label-schema.build-date: Tuesday_10_September_2019_11:1:10_CEST
org.label-schema.schema-version: 1.0
org.label-schema.usage.singularity.deffile.bootstrap: docker
[...]

You can inspect the original definiton file:

user@host:~$ singularity inspect -d fortune.sif
Bootstrap: docker
From: centos:6
%setup
 hostname -f > $SINGULARITY_ROOTFS/etc/build_host
[...]

See singularity help inspect for more options, and
/.singularity.d/ inside the container to see how it's all stored.

59 / 85

Runtime options
Fine-tuning container execution

60 / 85

Host resources
A container can have more host resources exposed.

For providing access to more directories, one can specify bind
options at runtime with -B:

$ singularity run -B source[:destination[:mode]] container.sif

where source is the path on the host, destination is the path
in a container (if different) and mode is optionally ro if you
don't want to give write access.

Of course, more than one bind can be specified.
Note that you can't specify this configuration in the container!

System administrators may specify binds that apply to all
containers (e.g. /scratch).

61 / 85

Host resources
Additionally, devices on the host can be exposed, e.g. the GPU;
but you need to make sure that the guest has the appropriate
drivers. One solution is to bind the drivers on the container.

For Nvidia CUDA applications specifically, Singularity
supports the --nv flag, which looks for specific libraries on the
host and binds them in the container.

OpenMPI should also work, provided the libraries on the host
and in the container are sufficiently close.

If set up correctly, it should work normally with mpirun:

$ mpirun -np 20 singularity run mpi_job.sif

62 / 85

Network
Historically, Singularity defaulted to no network isolation,
with an option of full isolation.

With 3.x, Singularity implements in-between options through
Container Network Interface:

https://github.com/containernetworking/cni

63 / 85

https://github.com/containernetworking/cni

Network
Historically, Singularity defaulted to no network isolation,
with an option of full isolation.

With 3.x, Singularity implements in-between options through
Container Network Interface:

https://github.com/containernetworking/cni

Port remapping example:

$ sudo singularity instance start --writable-tmpfs \
 --net --network-args "portmap=8080:80/tcp" docker://nginx web2
$ sudo singularity exec instance://web2 nginx
$ curl localhost:8080
[...]
$ sudo singularity instance stop web2

This requires root, but it's a common problem with
containerization technology at the moment.

63 / 85

https://github.com/containernetworking/cni

Fuller isolation
By default, a container is allowed a lot of "windows" into the
host system (dictated by Singularity configuration).

For an untrusted container, you can further restrict this with
options like --contain, --containall.

In this case, you have to manually define where standard
binds like the home folder or /tmp point.

See singularity help run for more information.

64 / 85

Distributing the container
Using the container after creation on another Linux machine
is simple: you simply copy the image file there.

Note that you can't just run the image file on a host without
Singularity installed!

Exercise:

Test the above, by trying to run fortune.sif inside itself.

65 / 85

Distributing the container
Using the container after creation on another Linux machine
is simple: you simply copy the image file there.

Note that you can't just run the image file on a host without
Singularity installed!

Exercise:

Test the above, by trying to run fortune.sif inside itself.

This approach makes it easy to deploy images on clusters with
shared network storage.

You can easily integrate Singularity with the usual scheduler
scripts (e.g. Slurm).

65 / 85

Cloud services
Current and upcoming ecosystem

66 / 85

Using Singularity Hub
Singularity Hub allows you to cloud-build your containers
from Bootstrap files, which you can then simply pull on a
target host.

https://singularity-hub.org/

67 / 85

https://singularity-hub.org/

Using Singularity Hub
Singularity Hub allows you to cloud-build your containers
from Bootstrap files, which you can then simply pull on a
target host.

https://singularity-hub.org/

This requires a GitHub repository with a Singularity
definition file. After creating an account and connecting to the
GitHub account, you can select a repository and branches to
be built.

Afterwards, you can pull the result:

user@host:~$ singularity pull shub://kav2k/fortune
[...]
user@host:~$./fortune_latest.sif
Hello, World! Fortune Teller, built by shub-builder-1450-kav2k-fortune-[...]

67 / 85

https://singularity-hub.org/

Singularity Hub quirks
Singularity Hub is not like Docker Hub, or similar registry.
You can't "push" an image there, it can only be built on
their side.

Singularity Hub is not an official Sylabs project, it's an
academic non-profit project by other developers.

Singularity Hub runs a modified version of Singularity 2.4,
making some newer build-time features unavailable (but
not runtime features).

There are no paid plans. Users are allowed a single private
project.

68 / 85

Sylabs cloud o�ering
Starting with Singluarity 3.0, the company behind Singularity
aims to provide a range of cloud services to improve
Singularity user experience.

Container Library as a counterpart for Docker Hub,
serving as an official image repository.

Remote Builder service to allow unprivileged users to
build containers in the cloud.

KeyStore service to enable container signature
verification.

69 / 85

Sylabs Container Library
Container Libary is the Singularity counterpart to Docker Hub:
a cloud registry for both public and private containers.

https://cloud.sylabs.io/library

The Library allows direct upload of pre-built (and signed)
containers, unlike Singularity Hub.

$ singularity push my.sif library://user/collection/my.sif:latest

$ singularity pull library://user/collection/my.sif:latest

As of September 2019, it's still in public beta; eventual plan is a
freemium model (pay for private images, pay for builder
hours).

70 / 85

https://cloud.sylabs.io/library

Sylabs Remote Builder
Building a container from a recipe requires sudo, imposing a
need for a separate container creation infrastructure.

Sylabs provides a remote builder service that can build an
image from a recipe file, then temporarily host it in Cloud
Library to be downloaded.

user@host:~$ singularity build --remote output.sif fortune.def
searching for available build agent......INFO: Starting build...
[...]
user@host:~$./output.sif
Hello, World! Fortune Teller, built by ip-10-10-30-146.ec2.internal
[..yet again, a funny quote..]

Caveat: all resources for a remote build must be accessible by
the build node (i.e. over internet).

71 / 85

Signing containers and Sylabs Keystore
To ensure safety of containers, SIF format allows them to be
cryptographically signed.

user@host:~$ singularity sign output.sif
user@host:~$ singularity verify output.sif

This alone provides assurance of integrity (has not been
modified).

For authentication, Sylabs provides a keyserver called
Keystore, which can be used to check signatures of keys not
locally available.

user@host:~$ singularity keys push <fingerprint>

user@host2:~$ singularity verify output.sif

72 / 85

Sylabs commercial o�ering
Both the Container Library and Remote Builder are currently
in free testing period. However, in future they will have a
freemium model.

There will also be on-premise versions of both services (which
are not open source).

Besides that, Sylabs offers Singularity PRO: a priority-
supported version of Singularity with ready-built packages.

Pricing is "upon request", and is either based on number of
hosts or is site-wide.

73 / 85

Running on UBELIX
From a practical standpoint, we want to use the container
technology on UBELIX.

Let's try with our toy container:

user@host:~$ ssh username@submit.unibe.ch
username@submit01:~$ singularity pull library://kav2k/default/fortune:latest
username@submit01:~$ sbatch -J fortune-test -t 00:00:10 \
--mem-per-cpu 100M --cpus-per-task 1 --wrap "./fortune_latest.sif"

74 / 85

Docker and Singularity
Instead of writing a Singularity file, you may write a
Dockerfile, build a Docker container and convert that.

Pros:

More portable: for some, using Docker or some other
container solution is preferable.
Easier private hosting: there is no mature private registry
tech for Singularity.

Cons:

Blackbox: Singularity understands less about the build
process, in terms of container metadata.
Complexity: Extra tool to learn if you don't know Docker.

Advice on Docker compatibility: Best Practices

75 / 85

https://www.sylabs.io/guides/3.2/user-guide/singularity_and_docker.html#best-practices

Docker -> Singularity
If you have a Docker image you want to convert to Singularity,
you have at least 4 options:

1. Upload the image to a Docker Registry (such as Docker
Hub) and pull/Bootstrap from there.

2. Use a private Docker registry to not rely on external
services

3. Directly pull from a local Docker daemon cache

4. Use intermediate format as generated by docker save

76 / 85

"Extra credit" topics

77 / 85

Reducing container size
Using traditional Linux distributions, even in minimal
configurations, can still be an overkill for running a single
application.

One can reduce container size by clearing various artifacts of
the build process, such as package manager caches.

Alternatively, one can use minimal Linux distributions, such
as Alpine Linux, as a base for containers, though compatibility
needs extra testing.

$ ll -h
-rwxr-xr-x 1 user group 66M Jun 25 15:04 centos_6.sif*
-rwxr-xr-x 1 user group 2.0M Jun 25 16:08 alpine.sif*

78 / 85

Singularity Instances
Running daemon-like persistent services with Singularity
(such as a web server) can conveniently be done with the
concept of Instances.

A %startscript section of the recipe describes what service to
launch, which subsequently works with instance commands:

$ singularity instance start nginx.sif web
$ singularity instance list
INSTANCE NAME PID CONTAINER IMAGE
web 790 /home/user/nginx.sif
$ singularity instance stop web

While an instance is running, the standard commands like
shell and exec work with an instance:// namespace.

79 / 85

SCI-F
One of the approaches for building scientific pipelines is
bundling several tools in a single "toolset" container.

SCI-F is a proposed standard for discovering and managing
tools within such modular containers.

Definition file can have several sections, e.g.:

%appenv foo
 BEST_GUY=foo
 export BEST_GUY

%appenv bar
 BEST_GUY=bar
 export BEST_GUY

%apprun foo
 echo The best guy is $BEST_GUY

%apprun bar
 echo The best guy is $BEST_GUY

80 / 85

SCI-F
You can then discover the apps bundled and run them:

$ singularity apps foobar.sif
bar
foo
$ singularity run --app bar foobar.sif
The best guy is bar

More sections can be made app-specific, including providing a
help description:

$ singularity help --app fortune moo.sif
fortune is the best app

81 / 85

Singularity Checks
A container check is a utility script that can verify a container.

Example uses:

Making sure no leftover artifacts from the build process
remains (e.g. root's bash history)

Testing for common vulnerabilities

Custom checks for your specific environment

$ singularity check --tag clean ubuntu.img

82 / 85

Reproducibility going forward
Pinning a specific version of a base image makes it more
probable that in future building the same recipe will be
impossible.

Singularity allows for easy storage of resulting containers, and
is good at providing backwards compatibility. This provides
archival capability (but containers can be large).

83 / 85

Reproducibility going forward
Pinning a specific version of a base image makes it more
probable that in future building the same recipe will be
impossible.

Singularity allows for easy storage of resulting containers, and
is good at providing backwards compatibility. This provides
archival capability (but containers can be large).

But a "frozen" container can get other compatibility problems
down the line, especially if it needs some host-container
interaction.

For example, compiled software in it is no longer optimized
for newer hardware architectures.

83 / 85

Reproducibility going forward
Pinning a specific version of a base image makes it more
probable that in future building the same recipe will be
impossible.

Singularity allows for easy storage of resulting containers, and
is good at providing backwards compatibility. This provides
archival capability (but containers can be large).

But a "frozen" container can get other compatibility problems
down the line, especially if it needs some host-container
interaction.

For example, compiled software in it is no longer optimized
for newer hardware architectures.

Bottom line: containers are not a silver bullet to solve
reproducibility problems, but they help.

83 / 85

Further reading
Singularity User Guide:
https://www.sylabs.io/guides/3.2/user-guide/

Singularity Admin Guide:
https://www.sylabs.io/guides/3.2/admin-guide/

Singularity White Paper: link

Extra credit: https://rootlesscontaine.rs/

84 / 85

https://www.sylabs.io/guides/3.2/user-guide/
https://www.sylabs.io/guides/3.2/admin-guide/
https://sylabs.io/assets/white-papers/Sylabs_Whitepaper_High_performance_server_v3.pdf
https://rootlesscontaine.rs/

Questions?

85 / 85

