
Introduction to Linux
Part I

https://goo.gl/8t6byZ

1 / 140

Agenda
1. What is Linux?
2. Linux interface: GUI vs CLI
3. Connecting to a remote Linux system
4. Linux directory structure
5. Moving and looking around
6. Reading and writing files
7. Organizing files and folders
8. Moving data from/to a remote Linux system

2 / 140

What is Linux?

3 / 140

What is Linux?

4 / 140

What is Linux?

The most common answer you'll hear is:

"Linux is an operating system"

5 / 140

What is Linux?

The most common answer you'll hear is:

"Linux is an operating system"

But what does this mean?

6 / 140

Operating systems

7 / 140

Operating systems

Hardware + Firmware

8 / 140

Operating systems

Kernel

Hardware + Firmware

9 / 140

Operating systems

System software
(shell, utilities, libraries, ...)

Kernel

Hardware + Firmware

10 / 140

Operating systems

User software

System software
(shell, utilities, libraries, ...)

Kernel

Hardware + Firmware

11 / 140

Operating systems

User software

System software
(shell, utilities, libraries, ...)

Operating system
Windows, Linux,

MacOS, Android, ...
Kernel

Hardware + Firmware

12 / 140

Operating systems

User software

System software
(shell, utilities, libraries, ...)

Linux

Kernel

Hardware + Firmware

In practice, we call this part "Linux"

13 / 140

Linux? Wait, I also heard "UNIX"?
UNIX is the name of an operating system from 1970 that
pioneered concepts that will form the basis of Linux (and
other OSes) today.

More importantly, it introduced a set of conventions that its
descendents follow. A system that follows them is called
"UNIX-like".

Most of what you learn here will easily transfer to other UNIX-
like OSes (e.g. macOS).

14 / 140

BSD family

1970 1980 1990 2000 Time

IBM

2010

0.9

System III & V family

BSD (Berkeley Software Distribution)

FreeBSD

NetBSD

OpenBSD

SunOS

Solaris

NextStep

Xenix OS

GNU
Linux distributions (a.k.a. GNU/Linux)*

CommercialUNIX

HP-UX

AIX

UnixWare

IRIX

Microsoft/SCO

Richard Stallman

Darwin

GNU/Hurd

Linus Torvalds

Andrew S. Tanenbaum
Minix

3.3

6.5.30

4.1.4

Research UNIX 10.5
Bell Labs: Ken Thompson,
Dennis Ritchie, et al.

Bill Joy

AT&T

SGI

Univel/SCO

4.4

6.1

11.0

macOS 10.12

7.1

11.3

7.2

11i v 3

4.11

3.4

16.4

Sun/Oracle

Apple

Theo de Raadt

Matthew Dillon
DragonFly BSD 4.8

(userland)

(kernel)

*The penetration of GNU utilities varies between distributions, some projects use GNU's implementation of the Linux
kernel (Linux-libre). Some operating systems mentioned here include GNU utilities to a lesser degree.

15 / 140

User Interface
GUI CLI

Graphical Interface Command Line

Some synonyms:
"Shell", "Terminal", "TTY"

16 / 140

Command Line Interface
user@host:~ $ cowsay "Command Line Interface"

< Command Line Interface >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

17 / 140

Command Line Interface
user@host:~ $ cowsay "Command Line Interface"

< Command Line Interface >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Input, output, and commands are text.

18 / 140

Command Line Interface
user@host:~ $ cowsay "Command Line Interface"

< Command Line Interface >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Input, output, and commands are text.

Easy on the computer: can run on any hardware.

19 / 140

Command Line Interface
user@host:~ $ cowsay "Command Line Interface"

< Command Line Interface >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Input, output, and commands are text.

Easy on the computer: can run on any hardware.

Network-friendly: a few bytes of text vs realtime stream of
images / GUI updates => tool of choice for remote access.

20 / 140

Command Line Interface
user@host:~ $ cowsay "Command Line Interface"

< Command Line Interface >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Input, output, and commands are text.

Easy on the computer: can run on any hardware.

Network-friendly: a few bytes of text vs realtime stream of
images / GUI updates => tool of choice for remote access.

Scripting/automation-friendly: text is easier to manipulate.

21 / 140

Command Line Interface
user@host:~ $ cowsay "Command Line Interface"

< Command Line Interface >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Input, output, and commands are text.

Easy on the computer: can run on any hardware.

Network-friendly: a few bytes of text vs realtime stream of
images / GUI updates => tool of choice for remote access.

Scripting/automation-friendly: text is easier to manipulate.

Expert-friendly, but beginner-unfriendly.

22 / 140

Connecting to a remote Linux system
The standard tool to connect to a remote system is ssh.

Acronym:

SSH: Secure Shell

It securely connects you to a remote system.
Communication is encrypted, both parties are authenticated.

First, you will need to log in to the system.

If your credentials are accepted, it creates a new shell for you.

It is then displayed on your screen and controlled by your
keyboard, relayed over the network.

23 / 140

Connecting from MacOS / Linux:
Good news: you already have a terminal and ssh of your own!

24 / 140

Connecting from MacOS / Linux:
Good news: you already have a terminal and ssh of your own!

First, open the terminal:

For MacOS, it's accessible from Launchpad, Utilities.
For Linux GUI, usually look for a program called Terminal.

25 / 140

Connecting from MacOS / Linux:
Good news: you already have a terminal and ssh of your own!

First, open the terminal:

For MacOS, it's accessible from Launchpad, Utilities.
For Linux GUI, usually look for a program called Terminal.

Then, you need to input the command to connect to a remote
host:

local.user@local:~ $ ssh user@remote

[..some mutual* authentication later..]

user@remote:~ $

26 / 140

Connecting from Windows:
You will need an SSH client. Standard one: PuTTY

Download the appropriate installer: https://goo.gl/pHFReU

27 / 140

https://goo.gl/pHFReU

Connecting from Windows:
Make sure "Connection type: SSH" is selected.
Put the remote's host name / IP in the form.
Select "Open"

A terminal window will open..

[..some mutual* authentication later..]

user@remote:~ $

28 / 140

Mutual authentication?
(and what's up with this side picture?)

29 / 140

Mutual authentication?
SSH authenticates both parties:

Client to server
Username + password
Username + cryptographic key
Something else!

Server to client
The server has a cryptographic key to prove its identity

30 / 140

Mutual authentication?
SSH authenticates both parties:

Client to server
Username + password
Username + cryptographic key
Something else!

Server to client
The server has a cryptographic key to prove its identity

The first time you connect, you need to explicitly say you trust
the (previously unknown) server.

On subsequent connections, SSH will verify that you are still
connecting to a server with the same key, and will warn you
before login credentials are transmitted if you aren't.

31 / 140

Mutual authentication?
SSH authenticates both parties:

Client to server
Username + password
Username + cryptographic key
Something else!

Server to client
The server has a cryptographic key to prove its identity

The first time you connect, you need to explicitly say you trust
the (previously unknown) server.

On subsequent connections, SSH will verify that you are still
connecting to a server with the same key, and will warn you
before login credentials are transmitted if you aren't.

This is called TOFU (Trust On First Use).

32 / 140

Mutual authentication
So, the first time you connect to a new server, you should
expect a warning you need to confirm:

In Linux/MacOS:

local.user@local:~ $ ssh user@remote
The authenticity of host 'remote (11.22.33.44)' can't be established.
ECDSA key fingerprint is SHA256:eQZbiUM4qV6ptjc0fN6/pFglj45qaNlXbLCULCTzSGM.
Are you sure you want to continue connecting (yes/no)?

33 / 140

Mutual authentication
So, the first time you connect to a new server, you should
expect a warning you need to confirm:

In Linux/MacOS:

local.user@local:~ $ ssh user@remote
The authenticity of host 'remote (11.22.33.44)' can't be established.
ECDSA key fingerprint is SHA256:eQZbiUM4qV6ptjc0fN6/pFglj45qaNlXbLCULCTzSGM.
Are you sure you want to continue connecting (yes/no)? yes

34 / 140

Mutual authentication
So, the first time you connect to a new server, you should
expect a warning you need to confirm:

In Linux/MacOS:

local.user@local:~ $ ssh user@remote
The authenticity of host 'remote (11.22.33.44)' can't be established.
ECDSA key fingerprint is SHA256:eQZbiUM4qV6ptjc0fN6/pFglj45qaNlXbLCULCTzSGM.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'remote,11.22.33.44' (ECDSA) to the list of known
hosts.

[..some client authentication later..]

user@remote:~ $

35 / 140

Mutual authentication
So, the first time you connect to a new server, you should
expect a warning you need to confirm:

In Windows/PuTTY:

36 / 140

Hands-on time: Connect to a server
Using your Campus account username/password, use
SSH/PuTTY to connect to UBELIX at submit.unibe.ch.

ssh user@submit.unibe.ch

A reminder, PuTTY can be obtained from
https://goo.gl/pHFReU

37 / 140

https://goo.gl/pHFReU

Greetings from a shell

38 / 140

Greetings from a shell
After connecting, you will be greeted with something like this:

user@remote:~ $

39 / 140

Greetings from a shell
After connecting, you will be greeted with something like this:

user@remote:~ $

What you see is the interface of the shell: a text-based
interface that allows you to launch other programs with
commands.

40 / 140

Greetings from a shell
After connecting, you will be greeted with something like this:

user@remote:~ $

What you see is the interface of the shell: a text-based
interface that allows you to launch other programs with
commands.

Mnemonic:

It's called a shell prompt since it's prompting you to enter a
command.

The prompt contains a short summary of current state of the
shell.

41 / 140

Anatomy of a prompt
The prompt looks like this:

user@remote:~ $

This may vary slightly from system to system, and is fully
configurable, but this is the typical form.

42 / 140

Anatomy of a prompt
The prompt looks like this:

user@remote:~ $

This may vary slightly from system to system, and is fully
configurable, but this is the typical form.

This form of the prompt answers 3 questions:

Who are you? Username user

Where are you? Hostname remote

Where in the filesystem are you? ~ (explained later)

43 / 140

Anatomy of a prompt
The prompt looks like this:

user@remote:~ $

This may vary slightly from system to system, and is fully
configurable, but this is the typical form.

This form of the prompt answers 3 questions:

Who are you? Username user

Where are you? Hostname remote

Where in the filesystem are you? ~ (explained later)

Terminating the prompt is (traditionally) a $ character: it
delimits where your input goes.

44 / 140

Taking command
The shell expects a textual command; most of the time you
type the command and press [ENTER] to commit it.

Let's try this (in slow motion)!

user@remote:~ $

⠀

45 / 140

Taking command
The shell expects a textual command; most of the time you
type the command and press [ENTER] to commit it.

Let's try this (in slow motion)!

user@remote:~ $ whoami

⠀

1. Typing in "whoami" as the shell waits

46 / 140

Taking command
The shell expects a textual command; most of the time you
type the command and press [ENTER] to commit it.

Let's try this (in slow motion)!

user@remote:~ $ whoami

⠀

1. Typing in "whoami" as the shell waits
2. Pressing [ENTER]. The shell will process the command

(launch the program whoami)

47 / 140

Taking command
The shell expects a textual command; most of the time you
type the command and press [ENTER] to commit it.

Let's try this (in slow motion)!

user@remote:~ $ whoami
user
⠀

1. Typing in "whoami" as the shell waits.
2. Pressing [ENTER]. The shell will process the command —

launch the program whoami.
3. The program will take over input/output — in this case, it

will output your username).

48 / 140

Taking command
The shell expects a textual command; most of the time you
type the command and press [ENTER] to commit it.

Let's try this (in slow motion)!

user@remote:~ $ whoami
user
user@remote:~ $ ⠀

1. Typing in "whoami" as the shell waits.
2. Pressing [ENTER]. The shell will process the command —

launch the program whoami.
3. The program will take over input/output — in this case, it

will output your username).
4. The program terminates, and control returns to the shell; it

shows a new prompt.

49 / 140

Try it!
Here's a few commands for you to try:

whoami

echo Hello!

pwd

ls -l

date

sleep 3

clear

history 5

Each should do something and return you to the shell prompt.
Can you guess what they do?

Note that you can use up/down arrows to access/repeat
previous commands.

50 / 140

Safety �rst, or emergency exits!
So far every command we encountered automatically
returned control back to the shell.

But what if a program is stuck, or expecting some input and
you're not sure what to do?

Typical shortcuts to stop / quit a program:

Ctrl + C (also called interrupt)
Esc (from "escape")
q (from "quit")
Ctrl + D (end of input, in case a program is waiting)

If you try those, usually you'll either exit the program or get
some hint on how to do it.

Ctrl is sometimes denoted as ^, e.g. ^C for Ctrl+C.

51 / 140

The Working Directory
One of the commands you executed, pwd, printed a directory
path (of your home directory, by default):

akashev@submit01:~ $ pwd
/home/ubelix/math/akashev

52 / 140

The Working Directory
One of the commands you executed, pwd, printed a directory
path (of your home directory, by default):

akashev@submit01:~ $ pwd
/home/ubelix/math/akashev

Mnemonic:

pwd stands for Print Working Directory

53 / 140

The Working Directory
One of the commands you executed, pwd, printed a directory
path (of your home directory, by default):

akashev@submit01:~ $ pwd
/home/ubelix/math/akashev

Mnemonic:

pwd stands for Print Working Directory

Whenever you use the shell, there is a concept of the current
(or "working") directory. This affects how commands search
for files and how they interpret paths.

Think of it as of "where" you are: if a server is a building
you're in, a working directory is the room you're in within
that building.

54 / 140

The Working Directory
One of the commands you executed, pwd, printed a directory
path (of your home directory, by default):

akashev@submit01:~ $ pwd
/home/ubelix/math/akashev

Usually, this information is printed in the shell prompt itself,
to remind you of the current state.

55 / 140

The Working Directory
One of the commands you executed, pwd, printed a directory
path (of your home directory, by default):

akashev@submit01:~ $ pwd
/home/ubelix/math/akashev

Usually, this information is printed in the shell prompt itself,
to remind you of the current state.

In this example it's ~, which represents the home directory.

56 / 140

The Working Directory
One of the commands you executed, pwd, printed a directory
path (of your home directory, by default):

akashev@submit01:~ $ pwd
/home/ubelix/math/akashev

Usually, this information is printed in the shell prompt itself,
to remind you of the current state.

In this example it's ~, which represents the home directory.

Here's how it would look if you were somewhere else, for
example in /var/log:

akashev@submit01:/var/log $

57 / 140

UNIX directory structure
If you're reading this tutorial, you likely already know that
files are normally organized into nested "directories" (or
"folders"). For example, on Windows you may have such a
path:

C:\folder\subfolder\file

On Linux, paths looks similarly:

/home/user/folder/subfolder/file

58 / 140

UNIX directory structure
/folder/subfolder/file

a file file
inside a directory subfolder
which is inside a directory folder
which itself is inside the root directory /

/

folder another_folder

subfolder file

file another_file

...

...

...

59 / 140

The / as directory separator
Forward slashes (/) separate the folders in the path.
Using multiple is valid, so the following is the same file:

/home/user/folder/subfolder/file
///home/user///folder/subfolder//file

60 / 140

The / as directory separator
Forward slashes (/) separate the folders in the path.
Using multiple is valid, so the following is the same file:

/home/user/folder/subfolder/file
///home/user///folder/subfolder//file

A path to a regular file never ends in /, e.g. this is not valid:

/home/user/folder/subfolder/file/

61 / 140

The / as directory separator
Forward slashes (/) separate the folders in the path.
Using multiple is valid, so the following is the same file:

/home/user/folder/subfolder/file
///home/user///folder/subfolder//file

A path to a regular file never ends in /, e.g. this is not valid:

/home/user/folder/subfolder/file/

Directories can be referred to with or without the final /:

/home/user/folder/subfolder
/home/user/folder/subfolder/

62 / 140

The / as directory separator
Forward slashes (/) separate the folders in the path.
Using multiple is valid, so the following is the same file:

/home/user/folder/subfolder/file
///home/user///folder/subfolder//file

A path to a regular file never ends in /, e.g. this is not valid:

/home/user/folder/subfolder/file/

Directories can be referred to with or without the final /:

/home/user/folder/subfolder
/home/user/folder/subfolder/

Root directory is special: / is its only name.

63 / 140

Absolute and relative paths
If a path starts with /, it's an absolute path that starts at root:

/home/user/folder/subfolder/file

64 / 140

Absolute and relative paths
If a path starts with /, it's an absolute path that starts at root:

/home/user/folder/subfolder/file

If it does not, then it's a relative path that starts at the current
working directory instead of /.

If the current working directory is

/home/user/folder

then the following paths point to the same file:

/home/user/folder/subfolder/file
subfolder/file

65 / 140

Absolute and relative paths
/home/user/folder/subfolder/file
subfolder/file

/

home var

subfolder file

file another_file

...

...

...

user another_user ...

folder another_folder ...

etc

66 / 140

Special folders . and ..
There are 2 special folders inside each folder: . and ..

. points to the folder itself.

/home/user/folder/subfolder/./file

67 / 140

Special folders . and ..
There are 2 special folders inside each folder: . and ..

. points to the folder itself.

/home/user/folder/subfolder/./file

.. points to one folder "up" in the path. At root, it points to
root itself.

/home/user/another_folder/../folder/file
/home/../../home/user/folder/file

68 / 140

Special folders . and ..
There are 2 special folders inside each folder: . and ..

. points to the folder itself.

/home/user/folder/subfolder/./file

.. points to one folder "up" in the path. At root, it points to
root itself.

/home/user/another_folder/../folder/file
/home/../../home/user/folder/file

It's mostly important for relative paths:

From /home/user/another_folder
../folder/file

69 / 140

Special folders . and ..
From /home/user/another_folder

/home/user/folder/subfolder/file
.././folder/file

subfolder file

file another_file ...

...

/home/user

folder another_folder ...

70 / 140

Home directories
Each user has a home directory assigned.

It acts as your default working directory.

By convention, its path usually starts with /home/ and ends
with your username:

/home/<maybe something else>/username

It's frequently referred to as ~:

/home/username/folder/file
~/folder/file

You can even refer to others' home folder with ~username:

/home/someone/file
~someone/file

71 / 140

Quiz time! [1/3]
Suppose the following:

Username: userA
Home directory: /home/userA

Working directory: /scratch/folder/B
Target: /scratch/folder/A/a

Which of those paths point to the target? (click to reveal)

~/../scratch/folder/A/a

~userA/../../scratch/folder/A/a

A/a

../A/a

/scratch/./folder/A/a

72 / 140

Quiz time! [2/3]
Suppose the following:

Username: userA
Home directory: /home/userA

Working directory: /home/userA/temp
Target: ../../userB/folder/file

Which of those paths point to the target? (click to reveal)

/home/userB/userB/folder/file

/home/userB/folder/file

~/folder/file

~/../userB/folder/file

~userB/folder/file

73 / 140

Quiz time! [3/3]
Suppose the following:

Username: userA
Home directory: /home/userA

Working directory: /home/userA/folder
Target: /home/userA/folder/file

Which of those paths point to the target? (click to reveal)

file

./file

~/file

~/folder/file

/home/userA/folder/subfolder/../file

74 / 140

Preparing for training
Please execute the following command to add the exercises to
your home folder:

$ wget https://scits.math.unibe.ch/script -O - | /bin/bash

This should be the only time you don't understand what
you're doing; and by the end of Part II you should understand
it.

75 / 140

Moving around
Now that we know:

Files and directories are organised in a tree
There's a "current"/working directory that we are in

we need to learn to move around in that tree.

76 / 140

Moving around
Now that we know:

Files and directories are organised in a tree
There's a "current"/working directory that we are in

we need to learn to move around in that tree.

For that, we need the cd command:

user@remote:~ $ cd scits-training
user@remote:~/scits-training $ pwd
/home/username/scits-training
user@remote:~/scits-training $

Acronym:

cd stands for "Change Directory"

77 / 140

Moving around
The general format of the command is cd DESTINATION, where
DESTINATION is a path (relative or absolute) to a directory.

user@remote:~ $ cd scits-training
user@remote:~/scits-training $ cd /usr/local/bin
user@remote:/usr/local/bin $

78 / 140

Moving around
The general format of the command is cd DESTINATION, where
DESTINATION is a path (relative or absolute) to a directory.

user@remote:~ $ cd scits-training
user@remote:~/scits-training $ cd /usr/local/bin
user@remote:/usr/local/bin $

To go "back up", one uses the special .. directory:

user@remote:/var/local/bin $ cd ..
user@remote:/usr/local $ cd ../..
user@remote:/ $

79 / 140

Moving around
The general format of the command is cd DESTINATION, where
DESTINATION is a path (relative or absolute) to a directory.

user@remote:~ $ cd scits-training
user@remote:~/scits-training $ cd /usr/local/bin
user@remote:/usr/local/bin $

To go "back up", one uses the special .. directory:

user@remote:/var/local/bin $ cd ..
user@remote:/usr/local $ cd ../..
user@remote:/ $

To go to your home directory, you can use ~:

user@remote:/ $ cd ~
user@remote:~ $

80 / 140

cd shortcuts
There are two useful tricks when using cd:

"cd -" goes back to the previous directory you were in:

user@remote:~ $ cd -
user@remote:/ $

And "cd" without arguments goes to your home folder:

user@remote:/ $ cd
user@remote:~ $

81 / 140

Tab-completion
This is a good point to introduce a helpful CLI tool: tab
completion

When entering a command, you can press the [Tab] key to
suggest a command, or path, based on already entered input.

user@remote:~ $ cd scits-training/a

Pressing [Tab] now completes the name, since it's the only one
that matches the beginning:

user@remote:~ $ cd scits-training/animals/

(continues on next slide)

82 / 140

Tab-completion
user@remote:~ $ cd scits-training/animals/

Pressing [Tab] once again won't change anything, since there
are mutiple choices for completion; however, if it is pressed
again, it shows possibilities:

user@remote:~ $ cd scits-training/animals/
Aardvark/ Badger/
user@remote:~ $ cd scits-training/animals/

83 / 140

Tab-completion
user@remote:~ $ cd scits-training/animals/

Pressing [Tab] once again won't change anything, since there
are mutiple choices for completion; however, if it is pressed
again, it shows possibilities:

user@remote:~ $ cd scits-training/animals/
Aardvark/ Badger/
user@remote:~ $ cd scits-training/animals/

The shell needs to know the next letter to proceed. So, we type
only "A" and press Tab again:

user@remote:~ $ cd scits-training/animals/A

84 / 140

Tab-completion
user@remote:~ $ cd scits-training/animals/

Pressing [Tab] once again won't change anything, since there
are mutiple choices for completion; however, if it is pressed
again, it shows possibilities:

user@remote:~ $ cd scits-training/animals/
Aardvark/ Badger/
user@remote:~ $ cd scits-training/animals/

The shell needs to know the next letter to proceed. So, we type
only "A" and press Tab again:

user@remote:~ $ cd scits-training/animals/Aardvark/

85 / 140

Tab-completion
user@remote:~ $ cd scits-training/animals/

Pressing [Tab] once again won't change anything, since there
are mutiple choices for completion; however, if it is pressed
again, it shows possibilities:

user@remote:~ $ cd scits-training/animals/
Aardvark/ Badger/
user@remote:~ $ cd scits-training/animals/

The shell needs to know the next letter to proceed. So, we type
only "A" and press Tab again:

user@remote:~ $ cd scits-training/animals/Aardvark/
user@remote:~/scits-training/animals/Aardvark/ $

86 / 140

Looking around
To look around in a UNIX filesystem, you use the ls command:

user@remote:~/scits-training/animals/Aardvark/ $ ls
description empty_file subfolder

Mnemonic:

ls stands for list

This lists the names for contents of the working directory.

87 / 140

Looking around
To look around in a UNIX filesystem, you use the ls command:

user@remote:~/scits-training/animals/Aardvark/ $ ls
description empty_file subfolder

Mnemonic:

ls stands for list

This lists the names for contents of the working directory.

We can specify another folder to look at:

user@remote:~/scits-training/animals/Aardvark/ $ ls ../Badger/
Arctonyx Meles Mellivora Melogale Mydaus

88 / 140

Looking around (in depth)
To show more information, we can use the -l (for long) flag:

user@remote:~/scits-training/animals/Aardvark/ $ ls -l
total 25640
-rw-r--r-- 1 username groupname 26214400 Aug 28 18:20 big_file
-rw-r--r-- 1 username groupname 754 Aug 25 17:55 description
-rw-r--r-- 1 username groupname 0 Aug 28 16:51 empty_file
drwxr-xr-x 2 username groupname 4096 Aug 28 16:52 subfolder

Important information from this output:

-rw-r--r-- is called the mode (explained in Part II).
d denotes directory in this example.
rw-r--r-- deals with permissions for the files.

username and groupname are owners of the file.
The number after groupname is the size (in bytes) of the file.

Important: for folders, it's not the size of all contents.
The date/time after the size is the modification date.

89 / 140

Looking around (as puny humans)
One can use the flag -h (for human-readable) for more
familiar size units:

user@remote:~/scits-training/animals/Aardvark/ $ ls -l -h
total 26M
-rw-r--r-- 1 username groupname 25M Aug 28 18:20 big_file
-rw-r--r-- 1 username groupname 754 Aug 25 17:55 description
-rw-r--r-- 1 username groupname 0 Aug 28 16:51 empty_file
drwxr-xr-x 2 username groupname 4096 Aug 28 16:52 subfolder

Single-letter flags in commands can often be combined:

user@remote:~/scits-training/animals/Aardvark/ $ ls -lh
total 26M
-rw-r--r-- 1 username groupname 25M Aug 28 18:20 big_file
-rw-r--r-- 1 username groupname 754 Aug 25 17:55 description
-rw-r--r-- 1 username groupname 0 Aug 28 16:51 empty_file
drwxr-xr-x 2 username groupname 4096 Aug 28 16:52 subfolder

90 / 140

Looking around (into hidden corners)
Another often-used flag is -a (for all): it lists contents with
names that start with a dot . which are normally hidden in
UNIX.

user@remote:~/scits-training/animals/Aardvark/ $ ls -a
. .. big_file description empty_file .hidden subfolder

As usual, it can be combined with others:

user@remote:~/scits-training/animals/Aardvark/ $ ls -lah
total 26M
drwxr-xr-x 2 username groupname 4096 Aug 28 16:52 .
drwxr-xr-x 2 username groupname 4096 Aug 28 16:52 ..
-rw-r--r-- 1 username groupname 25M Aug 28 18:20 big_file
-rw-r--r-- 1 username groupname 754 Aug 25 17:55 description
-rw-r--r-- 1 username groupname 0 Aug 28 16:51 empty_file
drwxr-xr-x 2 username groupname 4096 Aug 28 16:52 subfolder
-rw-r--r-- 1 username groupname 0 Aug 28 16:51 .hidden

91 / 140

Looking around (in orderly fashion)
By default, files are ordered by name.

This behavior can be changed with flags; here are some
examples:

-r reverses the sort order.
-S sorts files by size.
-t sorts files by modification time.
-X sorts files by filename extension, e.g. png in image.png.

As usual, this can be combined with the previous ones.

Exercise:

List files in Aardvark by increasing size.

92 / 140

I'm never going to remember this!

Good news: you don't have to.
As long as you remember the command's name, you can look
up its correct usage from the terminal itself.

Image credit: https://xkcd.com/1168/

93 / 140

https://xkcd.com/1168/

Getting help
Some common methods of getting help:

Many programs support --help flag to print out their
usage instructions:

user@remote:~/scits-training/animals/Aardvark/ $ ls --help
Usage: ls [OPTION]... [FILE]...
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.

Mandatory arguments to long options are mandatory for short options too.
 -a, --all do not ignore entries starting with .
[...]

94 / 140

Getting help
Some common methods of getting help:

For most programs, you can look up their manual file
with man:

user@remote:~/scits-training/animals/Aardvark/ $ man ls

Instead of just outputting the text and returning, you'll enter a
mode for showing long files.

Look around using arrow keys and PgDn/PgUp.

Remember the hints on how to exit (here, it's q).

You can search a man page for "something" with /something and
just / to go to the next find.

95 / 140

Getting help
Some common methods of getting help:

Some commands are not separate programs, but are built
into the shell, e.g. cd. For those, you can use help:

user@remote:~/scits-training/animals/Aardvark/ $ help cd

96 / 140

Getting help
Some common methods of getting help:

Some commands are not separate programs, but are built
into the shell, e.g. cd. For those, you can use help:

user@remote:~/scits-training/animals/Aardvark/ $ help cd

You can see what help can help with as well:

user@remote:~/scits-training/animals/Aardvark/ $ help

97 / 140

Try out man
Try opening the manual for ls:

user@remote:~/scits-training/animals/Aardvark/ $ man ls

Reminders:

You can search a man page for "something" with /something
and n to go to the next find.

To exit, you can use q.

Exercise:

Try searching for the meaning of -R flag, and try to use it.

98 / 140

Reading �les
We know how to look around the filesystem (with ls) and how
to move around (with cd).

However, we still need to access the contents of files.

There are many ways to do that, I'll show a few more common
ones.

99 / 140

Simple �le reading
The simplest program to read the file is cat

user@remote:~/scits-training/animals/Aardvark/ $ ls
big_file description empty_file naming subfolder
user@remote:~/scits-training/animals/Aardvark/ $ cat description
The aardvark (ARD-vark; Orycteropus afer) is a medium-sized, burrowing,
[...]

Mnemonic:

cat comes from the word "concatenate",
which means joining things together in a series.

Exercise:

What happens if we call cat with two filenames?

cat description naming

100 / 140

File is too long!
Sometimes a file is too long to be comfortably read with cat

user@remote:~/scits-training/animals/Aardvark/ $ cd ../../numbers/
user@remote:~/scits-training/numbers/ $ cat hundred
1
2
[...]
99
100

A hundred lines is too much to fit into the terminal window.

While you can scroll to look through the output, sometimes
files are much longer than that.

We can display only parts of the file, or use a program that
allows to navigate a file.

101 / 140

Parts of a cat?
If a cat is too long, perhaps we only need to look at its
beginning (head) or end (tail):

user@remote:~/scits-training/numbers/ $ head hundred
1
[...]
10

user@remote:~/scits-training/numbers/ $ tail hundred
91
[...]
100

Those commands display the first and last 10 lines of a file,
respectively.

Mnemonic:

Remembering cat together with head and tail may help.

102 / 140

Self-help test
Of course, you can look up other options with the self-help
methods like man.

Exercise:

Use one of the help methods (man head or head --help) to
learn how to display 5 lines instead of 10 with head.

Hint: it will be a flag that should go before the filename.

103 / 140

Self-help test
Of course, you can look up other options with the self-help
methods like man.

Exercise:

Use one of the help methods (man head or head --help) to
learn how to display 5 lines instead of 10 with head.

Hint: it will be a flag that should go before the filename.

Answer: -n 5, -n5 or --lines=5

user@remote:~/scits-training/numbers/ $ head -n 5 hundred
1
2
3
4
5

104 / 140

The �le is too long, show less
One way to navigate a big file is less:

user@remote:~/scits-training/numbers/ $ less hundred

You will recognize this interface, since man also uses less.

Commands to try:

Arrow keys to scroll line by line
PgUp / PgDn to scroll screen by screen
/something to search for "something"
n to go to next found "something", N to go back
> to go to the end of the file, < to go to the beginning
h to show help
q to quit

105 / 140

Modifying �les
Besides reading, we need to be able to create and modify files.

There are many editors available, and which one is "best" can
lead to hot debate.

We will mention and briefly explain two editors that are likely
to be installed on any system you encounter nowadays.

nano
vim

106 / 140

https://xkcd.com/378/

nano

user@remote:~/scits-training/numbers/ $ nano hundred

GNU nano 2.5.3 File: hundred

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
 [Read 100 lines]
^G Get Help ^O Write Out ^W Where Is ^K Cut Text ^J Justify ^C Cur Pos
^X Exit ^R Read File ^\ Replace ^U Uncut Text^T To Spell ^_ Go To Line

107 / 140

nano

nano is a small and simple editor which helpfully shows its
commands at the bottom (reminder, ^ means Ctrl):

^G Get Help ^O Write Out ^W Where Is ^K Cut Text ^J Justify ^C Cur Pos
^X Exit ^R Read File ^\ Replace ^U Uncut Text^T To Spell ^_ Go To Line

You can use arrow keys to move around, input text as normal
from where the cursor is.

Key commands:

Ctrl + W "where is" for searching the file
Ctrl + O "write out" to save changes
Ctrl + X "exit" to get back to the shell

108 / 140

Try nano
Exercise:

1. Open a new file, ten, with nano:

user@remote:~/scits-training/numbers/ $ nano ten

2. Add numbers from 1 to 10 to it, on separate lines

3. Save and exit nano

4. Verify what's in the file using cat

109 / 140

vim

vim (or, technically, "Vi IMproved") is one of two "Swiss knife"
editors that most Linux professionals prefer to use (the other
one being emacs).

vim is available almost everywhere, and with proper
configuration can do very sophisticated things.

With power comes complexity, but for basic editing one
doesn't have to remember a lot.

If you wish to (later) explore vim, you can go through its built-
in tutorial:

vimtutor

110 / 140

111 / 140

http://www.commitstrip.com/en/2017/05/29/trapped/

Organizing �les and folders
To recap, you should now be able to:

Navigate the file tree (with cd)
List folder contents (with ls)
Read and write files (with nano)

Our goal now is:

Make new folders
To move and copy files and folders around
Delete files and folders

112 / 140

Creating new folders
To create new folders, use the mkdir command:

user@remote:~/scits-training/numbers/ $ cd ..
user@remote:~/scits-training/ $ ls
animals numbers
user@remote:~/scits-training/ $ mkdir new-folder
user@remote:~/scits-training/ $ ls
animals new-folder numbers

Mnemonic:

mkdir stands for make directory

Exercise:

1. Create new-folder as shown above

2. Create directory subfolder inside it

3. Verify with ls

113 / 140

Creating new folders
mkdir will fail if the folder already exists:

user@remote:~/scits-training/ $ mkdir new-folder
mkdir: cannot create directory ‘new-folder’: File exists

Using it with -p means "create if needed", and also works with
chains of directories:

user@remote:~/scits-training/ $ mkdir -p new-folder/subfolder/subsubfolder
user@remote:~/scits-training/ $ ls -R new-folder
new-folder:
subfolder

new-folder/subfolder:
subsubfolder

new-folder/subfolder/subsubfolder:
user@remote:~/scits-training/ $

114 / 140

Moving �les
Move operations can be broken down into two cases:

1. Moving files and folders between folders:

folder1/something → folder2/something

2. Renaming files and folders:

something → other

Technically, it's "moving" from old name to new.

Both cases are served with the mv command.

Mnemonic:

mv stands for move

115 / 140

Preparing for exercises
user@remote:~/scits-training/ $ cd moving
user@remote:~/scits-training/moving $ ls
source destination
user@remote:~/scits-training/moving $ ls source
A1 A10 A11 A12 A2 A3 A4 A5 A6 A7 A8 A9 subfolder
user@remote:~/scits-training/moving $ ls source/subfolder
B1 B2 B3 B4 B5 B6 B7 B8 B9
user@remote:~/scits-training/moving $ ls destination
user@remote:~/scits-training/moving $

116 / 140

Moving �les
To move something to another folder: mv NAME DESTINATION, as
long as the DESTINATION is a directory that exists.

user@remote:~/scits-training/moving $ mv source/A2 destination

You can specify multiple things to move at the same time,
including folders:

$ mv source/A3 source/subfolder destination

Moves both source/A3 and source/subfolder into destination.

Exercise:

Move subfolder back into source

117 / 140

Renaming
Renaming is easy: mv OLDNAME NEWNAME, if NEWNAME is not a
directory.

For example, let's rename destination to dest:

user@remote:~/scits-training/moving $ mv destination dest

If you're renaming something in another folder, you must
specify the path twice:

$ mv source/A4 source/A40

Exercise:

1. Rename dest back into destination

2. Rename source/subfolder/B1 into source/subfolder/B10

118 / 140

Move + rename
Exercise:

Try the following:

user@remote:~/scits-training/moving $ mv source/A5 A50

Use ls to understand what happened (-R may help)

119 / 140

Move + rename
Exercise:

Try the following:

user@remote:~/scits-training/moving $ mv source/A5 A50

Use ls to understand what happened (-R may help)

Answer: Since there is no path for the second name, it moved
into the current directory and got renamed:

~/scits-training/moving/source/A5

↓

~/scits-training/moving/A50

120 / 140

Copying
Copying is done with cp

Mnemonic:

cp stands for copy.

Syntax is the same:

For copying to another directory, cp NAME DESTINATION
For copying to another name, cp OLDNAME NEWNAME

Exercise:

1. Copy source/A6 and source/A7 into destination

2. Copy source/A6 into source/A66

121 / 140

Copying folders
cp, unlike mv, will not copy directories by default:

$ cp source/subfolder destination
cp: omitting directory 'source/subfolder'

You need to use -R to copy folders together with their content

$ cp -R source/subfolder destination

Mnemonic:

-R stands for recursive

122 / 140

Deleting
To remove files or folders, use rm

Mnemonic:

rm stands for remove

rm NAME to remove a file
rm -r FOLDER to remove a folder

You can pass several names at once:

$ rm destination/subfolder/B1 destination/subfolder/B2

123 / 140

rm is unrecoverable!
When you delete files and folders with rm, you should be
aware that there is no concept of "Trash".

Anything you delete (or overwrite) is lost with no easy way to
recover.

You can use a flag -i to ask before any destructive operation.

user@remote:~/scits-training/moving $ cp -i -R source/subfolder destination
cp: overwrite 'destination/subfolder/B1'?

On the other hand, sometimes you want to override those
confirmations, especially for rm – you can do it with -f.

Mnemonic:

-i stands for interactive
-f stands for force

124 / 140

Wildcards
There are many A-files in source:

user@remote:~/scits-training/moving $ ls source
A1 A10 A11 A12 A40 A6 A66 A7 A8 A9 subfolder

We may want to copy them all at once. We can use wildcards:

* in a name means "any amount of any characters"
For example, A* can mean A, A1 and A10

? in a name means "any single character"
For example, A? can mean A1, A6 but not A10

The wildcards will not jump through directories:

*1 can mean A1, A11, but not subfolder/B1
/ can match subfolder/B1

125 / 140

Wildcard quiz (1/3)
Which of the following names match the pattern A*a*

AAa

A/a

aaA

CBAcba

abcABC

126 / 140

Wildcard quiz (2/3)
Which of the following names match the pattern A?a?

AAa

AAaa

Aaaa

AAaaa

aAAaa

127 / 140

Wildcard quiz (3/3)
Which of the following patterns match the name A110

A*

*

A

*A

A???

128 / 140

Using wildcards
Putting a name with a wildcard is equivalent to putting
several names:

$ cp source/A6* destination

is equivalent to

$ cp source/A6 source/A66 destination

So, you can use wildcards in any command that expects
multiple files.

129 / 140

Try wildcards
Use wildcards to do the following, from ~/scits-
training/moving:

Exercise:

1. List all files starting with A inside source/ (use ls with a
pattern).

2. Copy all files starting with B from source/subfolder into
destination.

3. Move all files starting with A1 from source into
destination.

4. Delete all files starting with A from destination.

130 / 140

Moving data in and out
So far we have moved the data around on the system itself.

It doesn't help if you want to load external data or download
the results of your programs.

131 / 140

Moving data in and out
So far we have moved the data around on the system itself.

It doesn't help if you want to load external data or download
the results of your programs.

Perhaps, it's your own system and you have access to cloud
storage or external storage devices.

Sometimes, you have a shared network folder between your
computer and the target system.

But how to do it, if your only interface to the server is SSH?

132 / 140

Moving data in and out
So far we have moved the data around on the system itself.

It doesn't help if you want to load external data or download
the results of your programs.

Perhaps, it's your own system and you have access to cloud
storage or external storage devices.

Sometimes, you have a shared network folder between your
computer and the target system.

But how to do it, if your only interface to the server is SSH?

We will cover two ways:

1. Downloading data from the Internet with wget

2. Copying data between computers with scp

133 / 140

Downloading from the shell
Sometimes, the data you need is a file on the Internet.

wget is the simplest-to-use tool for it:

user@remote:~/scits-training/moving $ cd ..
user@remote:~/scits-training/ $ wget https://example.com/
--2017-09-12 12:00:00-- https://example.com/
Resolving example.com (example.com)... 93.184.216.34
Connecting to example.com (example.com)|93.184.216.34|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1270 (1.2K) [text/html]
Saving to: ‘index.html’

100%[======================================>] 1,270 --.-K/s in 0s

2017-09-12 12:00:00 (36.2 MB/s) - ‘index.html’ saved [1270/1270]

user@remote:~/scits-training/ $ tail index.html

Mnemonic:

wget stands for Web get

134 / 140

Downloading from the shell
Notable option: renaming the file immediately.

-O (for output) chooses a specific file to write to

$ wget https://tools.ietf.org/rfc/rfc1149.txt -O april.txt
[...]
$ less april.txt

As usual, use man wget to see more options.

It can work with HTTP/HTTPS/FTP-hosted files.

135 / 140

Transferring �les between systems
To send files between two computers using SSH, the simplest
command is scp.

Mnemonic:

scp stands for secure copy

scp behaves a lot like cp, but you can provide locations on
other computers.

How to use scp on your own machine depends on the OS.

136 / 140

scp on Windows
While PuTTY includes a command-line client pscp with the
same functions, it may be better to use a GUI client WinSCP.

It can be downloaded from https://winscp.net/

You can then connect using SCP (or SFTP) with your normal
credentials and transfer files between your PC and the
remote:

137 / 140

https://winscp.net/

scp on Linux / MacOS
From your local terminal, you can transfer a file from
UBELIX:

user@local:~ $ scp user@submit.unibe.ch:~/scits-training/numbers/hundred .
[..some authentication..]
user@local:~ $ less hundred

scp's parameters work similarly to cp, but you can refer to files
on other systems by adding user@remote: to the path.

It works both ways, and can rename as well:

$ scp hundred user@submit.unibe.ch:~/scits-training/numbers/another_hundred

138 / 140

Moving data in and out
Exercise:

1. Copy all of the B-files from moving/source/subfolder to
your computer with one command (use wildcards).

2. Copy some folder from your computer to the home
folder of the remote system (use -r).

139 / 140

Moving data in and out
Exercise:

1. Copy all of the B-files from moving/source/subfolder to
your computer with one command (use wildcards).

2. Copy some folder from your computer to the home
folder of the remote system (use -r).

In addition to scp, there's a command that works better for
repeatedly copying large folders with small changes: rsync.

It will not be covered here, but look up information on it if it's
your use case.

140 / 140

