
Introduction to Linux
Part II

https://goo.gl/cypvZ1

1 / 96

Agenda
1. Linux resources you can use
2. Standard input/output and its redirection
3. UNIX pipelines
4. Background processes
5. Durable sessions with screen
6. File ownership and permissions
7. Shell scripting basics
8. Environment and customization
9. (Extra credits)

2 / 96

What Linux resources can I use?
To do development and run light workloads:

Your own computer may already run Linux.

You can install Linux in a virtual machine.

I recommend Virtualbox for personal use.

If you're running Windows 10, you can install
Windows Subsystem for Linux

3 / 96

https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux

What if it's not enough?
To create persistent services:

Ask your group's sysadmin for servers/VM resources.

UniBe Informatikdienste offers virtual machines.

Cloud resources: SWITCHengines, other cloud services.

To run heavy calculations:

UBELIX Linux cluster.

Your group may have in-house infrastructure.

Again, cloud services.

4 / 96

https://www.switch.ch/engines/
https://docs.id.unibe.ch/ubelix/ubelix-101

Prepare for the tutorial
You should be either running Linux, or connected to a Linux
system.

Log in to UBELIX, or inform me that you need access to
another system.

Execute the following to set up training (if you haven't
already):

$ wget https://scits.math.unibe.ch/script -O - | /bin/bash

5 / 96

Processes and their input/output
When you're connected to a Linux system, what you normally
see is the shell prompt, awaiting input:

user@host:~ $

A process called shell is responsible for input/output at this
moment.

By default, the input is either a keyboard connected to the
system, or your keypresses being relayed over the network.

The output, by default, is the screen connected to the system,
or text being relayed for display over the network.

6 / 96

Processes and their input/output
Those are called standard input and standard output, or
STDIN/STDOUT.

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

7 / 96

Processes and their input/output
Those are called standard input and standard output, or
STDIN/STDOUT.

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

If the user issues a command that calls another program, the
shell creates a child process and attaches the input/output to
it.

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

command

The shell will wait until the program terminates, after which
STDIN/STDOUT get reattached and a prompt is displayed.

8 / 96

Redirecting output
Sometimes, we want to capture what a command is outputting
to the screen.

For example, suppose that we want to save into a file the
directory structure returned by ls -R:

user@host:~ $ ls -R ~/scits-training
scits-training:
animals moving numbers io scripts
[...]
user@host:~ $

We can instruct the shell to redirect the standard output:

bash shellbash shellStandard input
STDIN

command

Standard output
STDOUT

File output
command.log

9 / 96

Redirecting output
To redirect the output, we add > FILE to the command:

user@host:~ $ cd ~/scits-training/io
user@host:~/scits-training/io $ ls -R ~/scits-training > listing
user@host:~/scits-training/io $ cat listing
scits-training:
animals moving numbers io scripts
[...]

This will overwrite the contents of FILE (if any) with the
output of the command.

The file will be created, if it does not exist yet.

10 / 96

Appending output
Sometimes we don't want to overwrite (sometimes called
"clobber") the file with new contents and add them to the end
instead.

To do that, use >> FILE instead of > FILE.

Exercise:

1. Try running the command date to see what it outputs.

2. Run date 3 times, appending the output to a file date.log.

3. Verify with cat that the file contains 3 records.

11 / 96

Error output
Try saving the output of a command with errors and you'll see
that it still outputs to the screen:

user@host:~/scits-training/io $ ls , > listing
ls: cannot access ,: No such file or directory
user@host:~/scits-training/io $

12 / 96

Error output
Try saving the output of a command with errors and you'll see
that it still outputs to the screen:

user@host:~/scits-training/io $ ls , > listing
ls: cannot access ,: No such file or directory
user@host:~/scits-training/io $

This is intentional: Linux actually has two output streams for
its command line, STDOUT for normal data and STDERR for
errors.

processbash shellStandard input
STDIN

Standard output
STDOUT

Error output
STDERR

This simplifies debugging: errors are separate from data.

13 / 96

Error output
STDERR is not redirected when using > or >>:

bash shellbash shellStandard input
STDIN

command

Standard output
STDOUT

File output
command.log

Error output
STDERR

14 / 96

Error output
STDERR is not redirected when using > or >>:

bash shellbash shellStandard input
STDIN

command

Standard output
STDOUT

File output
command.log

Error output
STDERR

It's possible to redirect it as well with 2> or 2>>:

user@host:~/scits-training/io $ ls .. , > listing 2> errors
user@host:~/scits-training/io $ cat errors
ls: cannot access ,: No such file or directory
user@host:~/scits-training/io $ cat listing
..:
animals io moving numbers scripts

15 / 96

Discarding output
Sometimes we don't need output at all.

In this case, we can redirect it to a special file, /dev/null

It's a device that will accept any input, discarding it
immediately.

16 / 96

Discarding output
Sometimes we don't need output at all.

In this case, we can redirect it to a special file, /dev/null

It's a device that will accept any input, discarding it
immediately.

For example, one might want to silence errors:

user@host:~/scits-training/io $ ls .. , 2> /dev/null
..:
animals io moving numbers scripts

17 / 96

Interactive input
Most commands we've seen don't require any interactive
input.

tr (for translate) is a command that transforms its input: it
substitutes some characters with others.

For example, tr 'a-z' 'A-Z' would translate all lowercase
letters into uppercase.

18 / 96

Interactive input
Most commands we've seen don't require any interactive
input.

tr (for translate) is a command that transforms its input: it
substitutes some characters with others.

For example, tr 'a-z' 'A-Z' would translate all lowercase
letters into uppercase.

Let's try this:

user@host:~/scits-training/io $ tr 'a-z' 'A-Z'
Let's input some text
LET'S INPUT SOME TEXT

19 / 96

Interactive input
user@host:~/scits-training/io $ tr 'a-z' 'A-Z'
Let's input some text
LET'S INPUT SOME TEXT
But enter doesn't stop it!
BUT ENTER DOESN'T STOP IT!

A problem: text can contain many lines, and the program
won't know when to stop.

20 / 96

Interactive input
user@host:~/scits-training/io $ tr 'a-z' 'A-Z'
Let's input some text
LET'S INPUT SOME TEXT
But enter doesn't stop it!
BUT ENTER DOESN'T STOP IT!

A problem: text can contain many lines, and the program
won't know when to stop.

We can terminate the program with Ctrl+C, but it actually
expects an end of input.

We can signal end of input with Ctrl+D on an empty line (or
pressing it twice).

21 / 96

Interactive input
user@host:~/scits-training/io $ tr 'a-z' 'A-Z'
Let's input some text
LET'S INPUT SOME TEXT
But enter doesn't stop it!
BUT ENTER DOESN'T STOP IT!

A problem: text can contain many lines, and the program
won't know when to stop.

We can terminate the program with Ctrl+C, but it actually
expects an end of input.

We can signal end of input with Ctrl+D on an empty line (or
pressing it twice).

Exercise:

What happens if we press Ctrl+D while back at the shell
prompt?

22 / 96

Redirecting input
What if we want to use a file as an input in a command that
doesn't accept files as arguments, we need instruct the shell to
use the file as the program's standard input:

bash shellbash shellStandard input
STDIN

command

Standard output
STDOUT

Error output
STDERR

File input
data

This is done with adding < FILE to the command.

user@host:~/scits-training/io $ tr 'a-z' 'A-Z' < errors
LS: CANNOT ACCESS ,: NO SUCH FILE OR DIRECTORY

23 / 96

Redirects
Exercise:

1. Combine input and output redirection to save the output
of last tr command into errors.uppercase

2. Use cat to verify the saved output.

24 / 96

Pipelines
We have shown how to save outputs to a file, and further
process files as inputs.

Sometimes, we don't need to save this intermediate
representation. In that case, we can directly connect the
output of one program to the input of another with pipes.

To do so, separate two commands with |:

user@host:~/scits-training/io $ ls . | tr 'a-z' 'A-Z'
DATE.LOG
ERRORS
ERRORS.UPPERCASE
LISTING

25 / 96

Pipelines
user@host:~/scits-training/io $ ls . | tr 'a-z' 'A-Z'
DATE.LOG
ERRORS
ERRORS.UPPERCASE
LISTING

Given this command, shell starts two processes in parallel and
ties their respective output and input together.

Standard input/output is connected at the ends of the chain:

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

command 1 command 2

26 / 96

Pipelines
user@host:~/scits-training/io $ ls . | tr 'a-z' 'A-Z'
DATE.LOG
ERRORS
ERRORS.UPPERCASE
LISTING

Given this command, shell starts two processes in parallel and
ties their respective output and input together.

Standard input/output is connected at the ends of the chain:

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

command 1 command 2

Such pipelines can be longer than two commands, and can be
combined with file redirects.

27 / 96

Filtering output
One extremely useful command used in pipes is grep.

It allows to search for text patterns. Example:

user@host:~/scits-training/io $ ls .
date.log
errors
errors.uppercase
listing
user@host:~/scits-training/io $ ls . | grep log
date.log

grep is versatile:

Can be used with regular expression patterns
Can search for non-matching lines (with -v)
Can search in files
Can print where the match happened in a file

See man grep or Google for more examples.
28 / 96

Pipelines and errors
You will notice that all errors are still output normally:

user@host:~/scits-training/io $ ls . , | tr 'a-z' 'A-Z'
ls: cannot access ,: No such file or directory
.:
DATE.LOG
ERRORS
ERRORS.UPPERCASE
LISTING

29 / 96

Pipelines and errors
You will notice that all errors are still output normally:

user@host:~/scits-training/io $ ls . , | tr 'a-z' 'A-Z'
ls: cannot access ,: No such file or directory
.:
DATE.LOG
ERRORS
ERRORS.UPPERCASE
LISTING

As before, errors are not normally redirected, and collected
from all processes in the pipe:

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

command 1 command 2

Error output
STDERR 30 / 96

Background jobs
Recall that, when running a command, the shell waits until it
is terminated: all input goes to the program (or nowhere).

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

command

Sometimes, we don't need to wait until the program
terminates – we actually want it running in background.

31 / 96

Background jobs
If you specify & at the end of the command, the shell will start
it, but keep control of STDIN:

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

command &

Instead of a foreground process, it becomes a background
job.

32 / 96

Background jobs
If you specify & at the end of the command, the shell will start
it, but keep control of STDIN:

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

command &

Instead of a foreground process, it becomes a background
job.

You are immediately returned to the shell and can run other
commands while the job executes.

Note that both the shell and the background job are connected
to STDOUT. Redirect output to prevent mix-ups.

33 / 96

Background jobs
Compare:

user@host:~/scits-training/io $ sleep 3
user@host:~/scits-training/io $ sleep 3 &
[1] 12231
user@host:~/scits-training/io $

Here, [1] is the job number, and 12231 is the process ID, or
PID.

After 3 seconds and when another command finishes (you can
just press Enter for an empty command), you'll be informed
that the job terminated:

user@host:~/scits-training/io $
[1]+ Done sleep 3
user@host:~/scits-training/io $

34 / 96

Listing jobs
You can list running background jobs with jobs:

user@host:~/scits-training/io $ sleep 100 &
[1] 12232
user@host:~/scits-training/io $ sleep 0 &
[2] 12233
user@host:~/scits-training/io $ jobs
[1]- Running sleep 100 &
[2]+ Done sleep 0

35 / 96

Terminating jobs
You can forcibly terminate a job with the kill command,
which accepts either PID or job ID (with %):

user@host:~/scits-training/io $ sleep 100 &
[1] 12234
user@host:~/scits-training/io $ kill 12234
user@host:~/scits-training/io $ jobs
[1]+ Terminated sleep 100

user@host:~/scits-training/io $ sleep 100 &
[1] 12235
user@host:~/scits-training/io $ kill %1

You can search for more process IDs to terminate with ps ax,
in case something is misbehaving.

36 / 96

Stopped jobs
Background jobs have nothing connected to their standard
input.

If a background job cannot continue without user input, it will
stop, which the shell will signal to you:

user@host:~/scits-training/io $ tr 'a-z' 'A-Z' &
[1] 12236
user@host:~/scits-training/io $
[1]+ Stopped tr /a-z/ /A-Z/
user@host:~/scits-training/io $

37 / 96

Stopped jobs
Background jobs have nothing connected to their standard
input.

If a background job cannot continue without user input, it will
stop, which the shell will signal to you:

user@host:~/scits-training/io $ tr 'a-z' 'A-Z' &
[1] 12236
user@host:~/scits-training/io $
[1]+ Stopped tr /a-z/ /A-Z/
user@host:~/scits-training/io $

You can bring a job to foreground to pass STDIN from the
shell to the running job with fg (or fg %N for a specific job
number):

user@host:~/scits-training/io $ fg
tr /a-z/ /A-Z/
You are now talking to the job
YOU ARE NOW TALKING TO THE JOB

38 / 96

Stopping and resuming programs
You can stop most currently-running programs with Ctrl+Z:

user@host:~/scits-training/io $ sleep 100
^Z
[1]+ Stopped sleep 100
user@host:~/scits-training/io $

39 / 96

Stopping and resuming programs
You can stop most currently-running programs with Ctrl+Z:

user@host:~/scits-training/io $ sleep 100
^Z
[1]+ Stopped sleep 100
user@host:~/scits-training/io $

From there, you can use fg to resume normal execution of the
program, or use bg to let it continue to run in the background.

user@host:~/scits-training/io $ bg
[1]+ sleep 100 &
user@host:~/scits-training/io $ jobs
[1]+ Running sleep 100 &

40 / 96

Background jobs are fragile
What will happen if you start a background job, and then
close the terminal?

41 / 96

Background jobs are fragile
What will happen if you start a background job, and then
close the terminal?

Closing the terminal (or disconnecting the SSH session) kills
the shell you were talking to. Since the job was a child
process of that shell, it will also be killed.

42 / 96

Background jobs are fragile
What will happen if you start a background job, and then
close the terminal?

Closing the terminal (or disconnecting the SSH session) kills
the shell you were talking to. Since the job was a child
process of that shell, it will also be killed.

A minor inconvenience if you're working on your own
machine (you can just leave the terminal open), but a much
bigger problem with remote connections.

If the connection is broken, the shell is also terminated along
with all processes launched from it.

How to protect against it?

43 / 96

screen

To protect your session, you can use screen.

screen starts a new shell that exists independently of your
current one.

Even if the current shell dies (e.g. because you disconnected),
the shell running in screen will continue together with all its
child processes.

44 / 96

screen

To protect your session, you can use screen.

screen starts a new shell that exists independently of your
current one.

Even if the current shell dies (e.g. because you disconnected),
the shell running in screen will continue together with all its
child processes.

Starting a new screen session is simple:

user@host:~/scits-training/io $ screen
[terminal screen is cleared]
user@host:~/scits-training/io $ echo "Hello, I'm in a screen"
Hello, I'm in a screen!
user@host:~/scits-training/io $

45 / 96

Reattaching to screen
Now suppose your connection was terminated.

Close the terminal where it is running to simulate that, then
log in again.

46 / 96

Reattaching to screen
Now suppose your connection was terminated.

Close the terminal where it is running to simulate that, then
log in again.

You can use screen -ls to list active sessions:

user@host:~ $ screen -ls
There is a screen on:
 13383.pts-2.host (11/09/17 03:02:23) (Detached)
1 Socket in /var/run/screen/S-user.

47 / 96

Reattaching to screen
Now suppose your connection was terminated.

Close the terminal where it is running to simulate that, then
log in again.

You can use screen -ls to list active sessions:

user@host:~ $ screen -ls
There is a screen on:
 13383.pts-2.host (11/09/17 03:02:23) (Detached)
1 Socket in /var/run/screen/S-user.

You can attach to a screen session (possibly detaching it first,
if it's being used somewhere) with -dR (for detach, reattach)

user@host:~ $ screen -dR
[terminal screen is cleared]
user@host:~/scits-training/io $ echo "Hello, I'm in a screen"
Hello, I'm in a screen!
user@host:~/scits-training/io $

48 / 96

Controlling screen
screen can be used for other things, such as having multiple
parallel shell sessions open.

Controlling screen consists of pressing Ctrl+A, then a screen-
specific command.

For example,

c will create a new shell within screen
n will switch to the next shell
d will detach from screen, returning you to the original
shell

Finally, you can use ? to access built-in help, or use man screen
for a more detailed manual.

49 / 96

Controlling screen
screen can be used for other things, such as having multiple
parallel shell sessions open.

Controlling screen consists of pressing Ctrl+A, then a screen-
specific command.

For example,

c will create a new shell within screen
n will switch to the next shell
d will detach from screen, returning you to the original
shell

Finally, you can use ? to access built-in help, or use man screen
for a more detailed manual.

Another popular alternative to screen is tmux. It will not be
covered by this tutorial, but is worth looking into.

50 / 96

Users and groups
Before we discuss permissions, we need to understand users
and groups in Linux.

A user is a unit of access control; it has a set of credentials to
access the system and owns some files on it.

A group is a collection of users to facilitate shared access to
resources. A user can belong to many groups but one group is
considered primary.

You can use id to check your user and groups:

akashev@submit01:~ $ id
uid=7265(akashev) gid=1109(math) groups=1109(math),902(l_gaussian)

Here, akashev is my user, math is my primary group and
l_gaussian is another group I belong to.

51 / 96

Permissions: rwx
Each file and directory in UNIX filesystems has 3 permissions
(for a particular user).

Regular files:

r, or Read, means that you can read the contents of a file.
w, or Write, means that you can modify the file.
x, or eXecute, means that the file may be launched as a
program.

Directories:

r means that you can read the list of files within the
directory.
w means that you can add or delete files from the directory.
x means you can traverse the folder: enter it with cd and
read the contents of its files.

52 / 96

Inspecting permissions
Try running ls -la to see permissions on files and folders:

$ ls -la
total 20
drwxrwxr-x 2 user group 4096 Sep 11 01:26 .
drwxrwxr-x 6 user group 4096 Sep 10 23:06 ..
-rw-rw-r-- 1 user group 90 Sep 10 23:08 date.log
-rw-rw-r-- 1 user group 47 Sep 11 00:50 errors
-rw-rw-r-- 1 user group 30 Sep 11 01:09 listing

We're interested in the first column: the cryptic drwxrwxr-x
and -rw-rwr--, which are called mode.

53 / 96

Inspecting permissions
Try running ls -la to see permissions on files and folders:

$ ls -la
total 20
drwxrwxr-x 2 user group 4096 Sep 11 01:26 .
drwxrwxr-x 6 user group 4096 Sep 10 23:06 ..
-rw-rw-r-- 1 user group 90 Sep 10 23:08 date.log
-rw-rw-r-- 1 user group 47 Sep 11 00:50 errors
-rw-rw-r-- 1 user group 30 Sep 11 01:09 listing

We're interested in the first column: the cryptic drwxrwxr-x
and -rw-rwr--, which are called mode.

The first character denotes the file type.
- means "regular file".
d means "directory".

The rest is divided in groups of three:
Access for the owner
Access for the group
Access for everyone else

54 / 96

File ownership
drwxrwxr-x 2 user group 4096 Sep 11 01:26 .
-rw-rw-r-- 1 user group 90 Sep 10 23:08 date.log

Each file in a UNIX filesystem has an owner and a group
attached.

In the example above, user is the owner and group is the
designated group.

Note that the user doesn't have to be in the assigned group.

55 / 96

E�ective permissions
-rwxr-x--- 1 user group 90 Sep 10 23:08 script

To determine which permissions apply, the following is
checked:

If the user is the owner, the first set applies (rwx, full
permissions)
If the user is in the designated group, the second set
applies (r-x, so cannot write)
For all other users, the third set applies (---, so cannot do
anything)

56 / 96

E�ective permissions
-rwxr-x--- 1 user group 90 Sep 10 23:08 script

To determine which permissions apply, the following is
checked:

If the user is the owner, the first set applies (rwx, full
permissions)
If the user is in the designated group, the second set
applies (r-x, so cannot write)
For all other users, the third set applies (---, so cannot do
anything)

A special user, superuser (normally called root), can
completely disregard permissions and do anything to any file
on the system.

57 / 96

Permissions: �rst match applies
Note that the system does not apply "best" permissions – only
the first set that matches.

Let's reverse the situation:

----r-xrwx 1 user group 90 Sep 10 23:08 script

For this file, the owner cannot do anything to the file, anyone
in group cannot modify it, but everyone else has full
permissions.

Note: the owner can always change a file's permissions.

58 / 96

Modifying permissions
To modify a file's permissions, use chmod CHANGES FILE

Mnemonic:

chmod stands for change mode.

Possible changes:

+r, +w, +x add permissions. Can combine: +rw
-r removes permissions.
=r sets pemissions to exactly r--.
Prefix u changes permissions for the user, e.g. u+r.
Prefix g changes permissions for the group, e.g. g+rw.
Prefix o changes permissions for others, e.g. o-w.
Prefix a or no prefix changes permissions for all three sets.
An octal number (e.g. 750) sets permissions to a specific
configuration (in this case, rwxr-x---).

59 / 96

Modifying permissions
Several changes can be applied at once, separated by commas:

user@host:~/scits-training/io $ ls -la date.log
-rwxrw-r-- 1 user group 90 Sep 10 23:08 date.log

user@host:~/scits-training/io $ chmod u+x,g=rx,o-r date.log

user@host:~/scits-training/io $ ls -la date.log
-rwxr-x--- 1 user group 90 Sep 10 23:08 date.log

Exercise:

Modify permissions on the file to be r-xr--rw-

60 / 96

Changing ownership
Similarly to chmod, the chown command allows changing a file's
owner and group.

chown USER FILE changes the owner
chown :GROUP FILE changes the group
chown USER:GROUP FILE changes both

Note: once the owner is changed, the old owner no longer can
modify access to the file.

For this reason, only administrators can change the file
owner, or assign a group the owner is not part of.

Exercise:

Use groups to list groups you belong to.

Change a file's group to one of them, and then back to the
original one.

61 / 96

Shell scripting
Shell is not just an interface to launch other programs; it
comes with its own scripting language to automate complex
tasks.

You can have variables, loops, conditionals – a full-featured
programming language.

We will only show the very basics.

Exercise:

Navigate to ~/scits-training/scripts and open boom.sh in
your favourite editor (nano, vim)

62 / 96

Shell scripting
#!/bin/bash

I hope you get the reference
echo "Someone set up us the bomb."
for i in {5..1}
do
 echo "$i.."
 sleep 1
done
explosion="Boom!"
echo $explosion

The first line of the script is special:

#!/bin/bash

It's called a "shebang" (for shell and "!" bang).

It tells the shell what to execute the rest of the script with.
Since we're writing a bash shell script, we put there the path to
/bin/bash itself.

63 / 96

Shell scripting
#!/bin/bash

I hope you get the reference
echo "Someone set up us the bomb."
for i in {5..1}
do
 echo "$i.."
 sleep 1
done
explosion="Boom!"
echo $explosion

Other lines starting with # are comments

I hope you get the reference

They are ignored by bash and are used to leave notes to
yourself or others.

64 / 96

Shell scripting
#!/bin/bash

I hope you get the reference
echo "Someone set up us the bomb."
for i in {5..1}
do
 echo "$i.."
 sleep 1
done
explosion="Boom!"
echo $explosion

echo command outputs its arguments to STDIN.

echo "Someone set up us the bomb."

Quotes are used to make text with spaces in it a single
argument; here, they are optional.

65 / 96

Shell scripting
#!/bin/bash

I hope you get the reference
echo "Someone set up us the bomb."
for i in {5..1}
do
 echo "$i.."
 sleep 1
done
explosion="Boom!"
echo $explosion

for designates a loop: a variable i will change from 5 to 1.

for i in {5..1}
do
 # something
done

The code in # something will repeat with i as 5, 4, 3, 2 and 1.

do and done delimit the bounds of the loop.
66 / 96

Shell scripting
#!/bin/bash

I hope you get the reference
echo "Someone set up us the bomb."
for i in {5..1}
do
 echo "$i.."
 sleep 1
done
explosion="Boom!"
echo $explosion

One can use the variable in expressions prefixed by $, i.e. $i:

echo "$i.."

If there is ambiguity as to where a variable name ends, use
braces: ${i}, e.g. "Sample ${i}A" for "Sample 1A", etc.

67 / 96

Shell scripting
#!/bin/bash

I hope you get the reference
echo "Someone set up us the bomb."
for i in {5..1}
do
 echo "$i.."
 sleep 1
done
explosion="Boom!"
echo $explosion

Variables can also be simply assigned to:

explosion="Boom!"
echo $explosion

The lack of spaces around = is significant.
Otherwise Bash will try to execute explosion as a command.

68 / 96

Running a script
OK, suppose we wrote the above script. How to execute it?

1. We need to make sure that it's allowed to execute:

user@host:~/scits-training/scripts $ chmod +x boom.sh

2. For security reasons, the current directory is not
automatically considered when starting other programs.
We need to explicitly refer to it:

user@host:~/scits-training/scripts $./boom.sh

Exercise:

1. Execute the script, saving its output to a file.

2. Modify the script to count down from 10.

69 / 96

Scripting, take two
The next script you will type out yourselves.

Open beer.sh in your favourite editor.

We'll write a simple script to determine if a user is old enough
to drink beer.

70 / 96

Scripting, take two
#!/bin/bash

Any bash script should start with an appropriate shebang.

We want to ask the user for his/her age; we can use the read
command.

-n prevents a line break, and note the extra space
echo -n "What's your age? "
read age

This will display a promt for the user and wait for input. The
result is then stored in the variable $age.

For simplicity, we will not check that the input is indeed a
valid number.

71 / 96

Scripting, take two
#!/bin/bash
echo -n "What's your age? "
read age

We need to make a decision based on age; we need an if-then-
else construct.

if [$age -lt 16]
then
 echo "You're too young to drink!"
else
 echo "You're old enough, have a beer!"
fi

fi here is if reversed, to close the if statement.

Conditionals in bash are a bit clunky, but -lt here stands for
less than. Again, the whitespace here is significant.

72 / 96

Scripting, take two
#!/bin/bash
echo -n "What's your age? "
read age
if [$age -lt 16]
then
 echo "You're too young to drink!"
else
 echo "You're old enough, have a beer!"
fi

Exercise:

1. Save this script to beer.sh.

2. Change the file's mode to allow execution.

3. Test the script with different values.

73 / 96

Scripting improvements
Let's add a little personal touch.

whoami is a command that returns the username. Let's edit
beer.sh to use it:

then
 echo "$(whoami), you're too young to drink!"
else
 echo "$(whoami), you're old enough, have a beer!"
fi

$(something) allows you to execute a command and substitute
the result within another command.

Exercise:

Test the new additions.

74 / 96

Scripting improvements
Let's read the age from the command line arguments.

bash automatically populates $0 with the name of the
executable, and $1, $2 and so on with arguments.

Let's use $1 as age if it's defined:

if [$1]
then
 age=$1
else
 echo -n "What's your age? "
 read age
fi

Exercise:

Test that ./beer.sh now automatically gets the age from its
first argument, and still asks if no argument is provided.

75 / 96

Return values
Whenever a program terminates, it returns a single integer to
the shell that called it; it's called the return value.

By convention:

0 means "no error".
any non-zero value means "some kind of error".

Let's return appropriate values:

then
 echo "$(whoami), you're too young to drink!"
 exit 1
else
 echo "$(whoami), you're old enough, have a beer!"
 exit 0
fi

76 / 96

Chaining commands
You can chain commands in shell with ; or &&.

; will execute commands one by one, regardless of errors.

$ command1; command2

&& will only execute the next command only if the previous
one returned 0, i.e. finished without errors.

$ command1 && command2

Exercise:

1. Apply the return value changes to beer.sh

2. Test it with ./beer.sh && echo 'Cheers!'

77 / 96

Environment variables
Your profile files can set various environment variables:
snippets of data inherited by programs running from shell.

You can see your current environment variables with:

$ env | less

78 / 96

Environment variables
Your profile files can set various environment variables:
snippets of data inherited by programs running from shell.

You can see your current environment variables with:

$ env | less

Some programs rely on environmental variables to change
their behavior. Example:

Will replace the default editor with vim in some commands
export EDITOR=vim

79 / 96

Environment variables
Environment variables work similarly to variables in a script,
except for the extra command export, which propagates this
variable to child processes.

By convention, environment variables are UPPERCASE.

80 / 96

Environment variables
Environment variables work similarly to variables in a script,
except for the extra command export, which propagates this
variable to child processes.

By convention, environment variables are UPPERCASE.

Exercise:

1. Set an ordinary varable A (A='Hello') and environment
variable B (export B='World').

2. Use echo $A and echo $B to display them.

3. Add echo $A and echo $B to a script and execute it. What
changes?

81 / 96

$PATH variable
An important variable is $PATH.

It's a colon-separated list of directories which are searched
when you try to run a program by name.

Notably, the current directory is not in $PATH.

If you have created some own scripts/programs and want
them to be available by name from anywhere, you can put
them in a folder (e.g. ~/bin) and add it to $PATH:

export PATH="$PATH:$HOME/bin"

82 / 96

$PATH variable, example
Exercise:

1. Try running beer.sh directly y name. It fails.

2. Add the folder that holds it to $PATH:

export PATH="$PATH:~/scits-training/scripts"

1. Try running beer.sh now.

2. Try going somewhere else (cd ~) and run it.

83 / 96

Aliases
If you use a certain command often, you can define a short
name for it.

For example, if you want a shorter name for ls -lh because
you always want to see human-readable sizes, you can make
an alias:

$ alias lh="ls -lh"
$ lh
total 26M
-rw-r--r-- 1 user group 25M Sep 11 07:22 big_file
-rw-r--r-- 1 user group 735 Sep 11 07:22 description
-rw-r--r-- 1 user group 0 Sep 11 07:22 empty_file
-rw-r--r-- 1 user group 551 Sep 11 07:22 naming
drwxr-xr-x 0 user group 512 Sep 11 07:22 subfolder

84 / 96

Making customizations permanent
To make above tweaks permanent, they need to be added
either to .bash_profile or .bashrc.

Then they will apply on each opened shell.

.bash_profile is sourced at most once. Put things there
that shouldn't be called multiple times.

.bashrc is sourced almost every time bash is called, except
for initial SSH shell. To be safe, you can "include" .bashrc
into .bash_profile like this:

In .bash_profile
-f tests that file exists
source executes commands in the current shell
if [-f ~/.bashrc]; then
 source ~/.bashrc
fi

85 / 96

Extra credits

86 / 96

Searching through history
There's a way to quickly search through previous commands.

Ctrl+R opens "reverse search" mode. Enter some pattern and
the closest command in history that matches will be shown.

To look into older commands, press Ctrl+R again, or Ctrl+C to
abort.

87 / 96

Custom shell prompt
The variable $PS1 contains the format template for your shell
prompt.

Throughout this training, you saw the following prompt:

user@host:~ $

You can customize it! For example:

user@host:~ $ export PS1="[\t] \u@\h:\w\\n\\$ "

[16:40:00] user@host:~
$

Want to control that precisely? Want to add color?

There's a guide for that.

88 / 96

https://www.digitalocean.com/community/tutorials/how-to-customize-your-bash-prompt-on-a-linux-vps

Finding �les
The find PATH command looks through the filesystem at PATH
to find files.

One can then filter the output with grep, or use find's own
keys for sophisticated filtering.

user@host:~ $ find ~/scits-training -name .sh
/home/user/scits-training/scripts/boom.sh
/home/user/scits-training/scripts/beer.sh

89 / 96

xargs

The xargs command can be used to convert output into
arguments of another command.

xargs COMMAND will take input and pass it as separate
arguments after COMMAND:

user@host:~ $ find ~/scits-training -name .sh | xargs cat
[contents of both .sh files]

This is equivalent to

user@host:~ $ cat /home/user/scits-training/scripts/boom.sh \
/home/user/scits-training/scripts/beer.sh

90 / 96

Public key authentication: theory
It can be useful to use key authentication instead of standard
password authentication.

Far more secure — suitable for internet-facing computers.
May be required in cloud environments to set new VMs.
Allows passwordless authentication for more convenience.

91 / 96

Public key authentication: theory
It can be useful to use key authentication instead of standard
password authentication.

Far more secure — suitable for internet-facing computers.
May be required in cloud environments to set new VMs.
Allows passwordless authentication for more convenience.

It is based on modern cryptography and consists of pairs of
keys: public, which you can give to others, and private, that
you keep yourself (preferably encrypted with a passphrase).

Having the private key allows you to prove that you own the
keypair to anyone having your public key, without disclosing
the private key itself.

92 / 96

Public key authentication: work�ow
When setting up public key authentication on Linux, here's
the workflow:

1. You generate a keypair: private key and public key files.

On Linux/Mac, ssh-keygen is used. On Windows, PuTTYgen
can be used.

2. You copy the public to the remote system.

3. You connect, instructing SSH to use the private key.

If it's encrypted, you're asked for the passphrase (and may
be cached in an SSH agent after that).

93 / 96

Public key authentication: work�ow
On most Linux systems, it is sufficient to have your public key
in ~/.ssh/authorized_keys file.

To copy the keypair to the remote system, ssh-copy-id script
can be used.

94 / 96

Public key authentication: work�ow
On most Linux systems, it is sufficient to have your public key
in ~/.ssh/authorized_keys file.

To copy the keypair to the remote system, ssh-copy-id script
can be used.

Otherwise, you need to create that file/folder yourself, and
make sure they have proper permissions.

user@remote:~$ ls -l ~/.ssh
total 12
drwx------ 2 user user 4096 Sep 13 2017 .
drwxr-xr-x 13 user user 4096 Sep 2 21:47 ..
-rw------- 1 user user 1159 Jan 21 2018 authorized_keys
user@remote:~$ cat .ssh/authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAA[...]j6aKfAUoXOE= some comment

95 / 96

Public key authentication: work�ow
On most Linux systems, it is sufficient to have your public key
in ~/.ssh/authorized_keys file.

To copy the keypair to the remote system, ssh-copy-id script
can be used.

Otherwise, you need to create that file/folder yourself, and
make sure they have proper permissions.

user@remote:~$ ls -l ~/.ssh
total 12
drwx------ 2 user user 4096 Sep 13 2017 .
drwxr-xr-x 13 user user 4096 Sep 2 21:47 ..
-rw------- 1 user user 1159 Jan 21 2018 authorized_keys
user@remote:~$ cat .ssh/authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAA[...]j6aKfAUoXOE= some comment

To use a key, one can use -i PRIVATE_KEY_FILE flag for ssh, or
Pageant on Windows.

96 / 96

