
Introduction to Linux
Part I

https://goo.gl/Vg3iXW

v.1.1 (2019-09-02)

1 / 172

Agenda
1. What is Linux?
2. Linux interface: GUI vs CLI
3. Connecting to a remote Linux system
4. Linux directory structure
5. Moving and looking around
6. Reading and writing files
7. Organizing files and folders
8. Using wildcards and braces

2 / 172

What is Linux?

3 / 172

What is Linux?

4 / 172

What is Linux?

The most common answer you'll hear is:

"Linux is an operating system"

4 / 172

What is Linux?

The most common answer you'll hear is:

"Linux is an operating system"

But what does this mean?

4 / 172

Operating systems

5 / 172

Operating systems

Hardware + Firmware

5 / 172

Operating systems

Kernel

Hardware + Firmware

5 / 172

Operating systems

System software
(shell, utilities, libraries, ...)

Kernel

Hardware + Firmware

5 / 172

Operating systems

User software

System software
(shell, utilities, libraries, ...)

Kernel

Hardware + Firmware

5 / 172

Operating systems

User software

System software
(shell, utilities, libraries, ...) Operating system

Windows, Linux,
MacOS, Android, ...Kernel

Hardware + Firmware

5 / 172

Operating systems

User software

System software
(shell, utilities, libraries, ...)

Linux

Kernel

Hardware + Firmware

In practice, we call this part "Linux"

5 / 172

Linux? Wait, I also heard "UNIX"?
UNIX is the name of an operating system from 1970 that
pioneered concepts that will form the basis of Linux (and
other OSes) today.

More importantly, it introduced a set of conventions that its
descendents follow. A system that follows them is called
"UNIX-like".

Most of what you learn here will easily transfer to other UNIX-
like OSes (e.g. macOS).

6 / 172

BSD family

1970 1980 1990 2000 Time

IBM

2010

0.9

System III & V family

BSD (Berkeley Software Distribution)

FreeBSD

NetBSD

OpenBSD

SunOS

Solaris

NextStep

Xenix OS

GNU
Linux distributions (a.k.a. GNU/Linux)*

CommercialUNIX

HP-UX

AIX

UnixWare

IRIX

Microsoft/SCO

Richard Stallman

Darwin

GNU/Hurd

Linus Torvalds

Andrew S. Tanenbaum

Minix

3.3

6.5.30

4.1.4

Research UNIX 10.5

Bell Labs: Ken Thompson,
Dennis Ritchie, et al.

Bill Joy

AT&T

SGI

Univel/SCO

4.4

6.1

11.0

macOS 10.12

7.1

11.3

7.2

11i v 3

4.11

3.4

16.4

Sun/Oracle

Apple

Theo de Raadt

Matthew Dillon

DragonFly BSD 4.8

(userland)

(kernel)

*The penetration of GNU utilities varies between distributions, some projects use GNU's implementation of the Linux
kernel (Linux-libre). Some operating systems mentioned here include GNU utilities to a lesser degree.

7 / 172

User Interface
GUI CLI

Graphical Interface Command Line

Some synonyms:
"Shell", "Terminal", "TTY"

8 / 172

Command Line Interface
user@host:~ $ cowsay "Command Line Interface"

< Command Line Interface >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

9 / 172

Command Line Interface
user@host:~ $ cowsay "Command Line Interface"

< Command Line Interface >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Input, output, and commands are text.

9 / 172

Command Line Interface
user@host:~ $ cowsay "Command Line Interface"

< Command Line Interface >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Input, output, and commands are text.

Easy on the computer: can run on any hardware.

9 / 172

Command Line Interface
user@host:~ $ cowsay "Command Line Interface"

< Command Line Interface >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Input, output, and commands are text.

Easy on the computer: can run on any hardware.

Network-friendly: a few bytes of text vs realtime stream of
images / GUI updates => tool of choice for remote access.

9 / 172

Command Line Interface
user@host:~ $ cowsay "Command Line Interface"

< Command Line Interface >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Input, output, and commands are text.

Easy on the computer: can run on any hardware.

Network-friendly: a few bytes of text vs realtime stream of
images / GUI updates => tool of choice for remote access.

Scripting/automation-friendly: text is easier to manipulate.

9 / 172

Command Line Interface
user@host:~ $ cowsay "Command Line Interface"

< Command Line Interface >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Input, output, and commands are text.

Easy on the computer: can run on any hardware.

Network-friendly: a few bytes of text vs realtime stream of
images / GUI updates => tool of choice for remote access.

Scripting/automation-friendly: text is easier to manipulate.

Expert-friendly, but beginner-unfriendly.

9 / 172

Connecting to a remote Linux system
The standard tool to connect to a remote system is ssh.

Acronym:

SSH: Secure Shell

It securely connects you to a remote system.
Communication is encrypted, both parties are authenticated.

First, you will need to log in to the system.

If your credentials are accepted, it creates a new shell for you.

It is then displayed on your screen and controlled by your
keyboard, relayed over the network.

10 / 172

Connecting from MacOS / Linux / Win10:
Good news: you already have a terminal and ssh of your own!

11 / 172

Connecting from MacOS / Linux / Win10:
Good news: you already have a terminal and ssh of your own!

First, open the terminal:

For MacOS, it's accessible from Launchpad, Utilities.
For Linux GUI, usually look for a program called Terminal.
For Windows 10, open Command Prompt.

11 / 172

Connecting from MacOS / Linux / Win10:
Good news: you already have a terminal and ssh of your own!

First, open the terminal:

For MacOS, it's accessible from Launchpad, Utilities.
For Linux GUI, usually look for a program called Terminal.
For Windows 10, open Command Prompt.

Then, you need to input the command to connect to a remote
host:

local.user@local:~ $ ssh user@remote

[..some mutual* authentication later..]

user@remote:~ $

11 / 172

Connecting from Windows:
You will need an SSH client. Standard one: PuTTY

Download the appropriate installer: https://goo.gl/pHFReU

12 / 172

https://goo.gl/pHFReU

Connecting from Windows:
Make sure "Connection type: SSH" is selected.
Put the remote's host name / IP in the form.
Select "Open"

A terminal window will open..

[..some mutual* authentication later..]

user@remote:~ $

13 / 172

Mutual authentication?
(and what's up with this side picture?)

14 / 172

Mutual authentication?
SSH authenticates both parties:

Client to server
Username + password
Username + cryptographic key
Something else!

Server to client
The server has a cryptographic key to prove its identity

15 / 172

Mutual authentication?
SSH authenticates both parties:

Client to server
Username + password
Username + cryptographic key
Something else!

Server to client
The server has a cryptographic key to prove its identity

The first time you connect, you need to explicitly say you trust
the (previously unknown) server.

On subsequent connections, SSH will verify that you are still
connecting to a server with the same key, and will warn you
before login credentials are transmitted if you aren't.

15 / 172

Mutual authentication?
SSH authenticates both parties:

Client to server
Username + password
Username + cryptographic key
Something else!

Server to client
The server has a cryptographic key to prove its identity

The first time you connect, you need to explicitly say you trust
the (previously unknown) server.

On subsequent connections, SSH will verify that you are still
connecting to a server with the same key, and will warn you
before login credentials are transmitted if you aren't.

This is called TOFU (Trust On First Use).

15 / 172

Mutual authentication
So, the first time you connect to a new server, you should
expect a warning you need to confirm:

In Linux/MacOS:

local.user@local:~ $ ssh user@remote
The authenticity of host 'remote (11.22.33.44)' can't be established.
ECDSA key fingerprint is SHA256:eQZbiUM4qV6ptjc0fN6/pFglj45qaNlXbLCULCTzSGM.
Are you sure you want to continue connecting (yes/no)?

16 / 172

Mutual authentication
So, the first time you connect to a new server, you should
expect a warning you need to confirm:

In Linux/MacOS:

local.user@local:~ $ ssh user@remote
The authenticity of host 'remote (11.22.33.44)' can't be established.
ECDSA key fingerprint is SHA256:eQZbiUM4qV6ptjc0fN6/pFglj45qaNlXbLCULCTzSGM.
Are you sure you want to continue connecting (yes/no)? yes

16 / 172

Mutual authentication
So, the first time you connect to a new server, you should
expect a warning you need to confirm:

In Linux/MacOS:

local.user@local:~ $ ssh user@remote
The authenticity of host 'remote (11.22.33.44)' can't be established.
ECDSA key fingerprint is SHA256:eQZbiUM4qV6ptjc0fN6/pFglj45qaNlXbLCULCTzSGM.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'remote,11.22.33.44' (ECDSA) to the list of known
hosts.

[..some client authentication later..]

user@remote:~ $

16 / 172

Mutual authentication
So, the first time you connect to a new server, you should
expect a warning you need to confirm:

In Windows/PuTTY:

17 / 172

Hands-on time: Connect to a server
Using your Campus account username/password, use
SSH/PuTTY to connect to UBELIX at submit.unibe.ch.

ssh user@submit.unibe.ch

If you're using the provided training VM, connect to it using
the credentials given:

ssh trainingNN@12.34.56.78

(Substitute the user names / IP with real ones)

A reminder, PuTTY can be obtained from
https://goo.gl/pHFReU

18 / 172

https://goo.gl/pHFReU

Greetings from a shell

19 / 172

Greetings from a shell
After connecting, you will be greeted with something like this:

user@remote:~ $

20 / 172

Greetings from a shell
After connecting, you will be greeted with something like this:

user@remote:~ $

What you see is the interface of the shell: a text-based
interface that allows you to launch other programs with
commands.

20 / 172

Greetings from a shell
After connecting, you will be greeted with something like this:

user@remote:~ $

What you see is the interface of the shell: a text-based
interface that allows you to launch other programs with
commands.

Mnemonic:

It's called a shell prompt since it's prompting you to enter a
command.

The prompt contains a short summary of current state of the
shell.

20 / 172

Anatomy of a prompt
The prompt looks like this:

user@remote:~ $

This may vary slightly from system to system, and is fully
configurable, but this is the typical form.

21 / 172

Anatomy of a prompt
The prompt looks like this:

user@remote:~ $

This may vary slightly from system to system, and is fully
configurable, but this is the typical form.

This form of the prompt answers 3 questions:

Who are you? Username user

Where are you? Hostname remote

Where in the filesystem are you? ~ (explained later)

21 / 172

Anatomy of a prompt
The prompt looks like this:

user@remote:~ $

This may vary slightly from system to system, and is fully
configurable, but this is the typical form.

This form of the prompt answers 3 questions:

Who are you? Username user

Where are you? Hostname remote

Where in the filesystem are you? ~ (explained later)

Terminating the prompt is (traditionally) a $ character: it
delimits where your input goes.

21 / 172

Taking command
The shell expects a textual command; most of the time you
type the command and press [ENTER] to commit it.

Let's try this (in slow motion)!

user@remote:~ $

⠀

22 / 172

Taking command
The shell expects a textual command; most of the time you
type the command and press [ENTER] to commit it.

Let's try this (in slow motion)!

user@remote:~ $ whoami

⠀

1. Typing in "whoami" as the shell waits

22 / 172

Taking command
The shell expects a textual command; most of the time you
type the command and press [ENTER] to commit it.

Let's try this (in slow motion)!

user@remote:~ $ whoami

⠀

1. Typing in "whoami" as the shell waits
2. Pressing [ENTER]. The shell will process the command

(launch the program whoami)

22 / 172

Taking command
The shell expects a textual command; most of the time you
type the command and press [ENTER] to commit it.

Let's try this (in slow motion)!

user@remote:~ $ whoami
user
⠀

1. Typing in "whoami" as the shell waits.
2. Pressing [ENTER]. The shell will process the command —

launch the program whoami.
3. The program will take over input/output — in this case, it

will output your username).

22 / 172

Taking command
The shell expects a textual command; most of the time you
type the command and press [ENTER] to commit it.

Let's try this (in slow motion)!

user@remote:~ $ whoami
user
user@remote:~ $ ⠀

1. Typing in "whoami" as the shell waits.
2. Pressing [ENTER]. The shell will process the command —

launch the program whoami.
3. The program will take over input/output — in this case, it

will output your username).
4. The program terminates, and control returns to the shell; it

shows a new prompt.

22 / 172

Try it!
Here's a few commands for you to try:

whoami

echo Hello!

pwd

ls -l

date

sleep 3

clear

history 5

Each should do something and return you to the shell prompt.
Can you guess what they do?

Note that you can use up/down arrows to access/repeat
previous commands.

23 / 172

Safety �rst, or emergency exits!
So far every command we encountered automatically
returned control back to the shell.

But what if a program is stuck, or expecting some input and
you're not sure what to do?

Typical shortcuts to stop / quit a program:

Ctrl + C (also called interrupt)
Esc (from "escape")
q (from "quit")
Ctrl + D (end of input, in case a program is waiting)

If you try those, usually you'll either exit the program or get
some hint on how to do it.

Ctrl is sometimes denoted as ^, e.g. ^C for Ctrl+C.

24 / 172

Anatomy of a shell command
The shell expects input. What does it (typically) look like?

user@remote:~ $ program -f --option abc 123

Here, program is the command being executed, and the rest is
the list of its arguments:

1. -f
2. --option
3. abc
4. 123

Arguments that start with - or -- are often called flags or
switches and traditionally change some options of the
command.

25 / 172

The Working Directory
One of the commands you executed, pwd, printed a directory
path (of your home directory, by default):

akashev@submit01:~ $ pwd
/home/ubelix/math/akashev

26 / 172

The Working Directory
One of the commands you executed, pwd, printed a directory
path (of your home directory, by default):

akashev@submit01:~ $ pwd
/home/ubelix/math/akashev

Mnemonic:

pwd stands for Print Working Directory

26 / 172

The Working Directory
One of the commands you executed, pwd, printed a directory
path (of your home directory, by default):

akashev@submit01:~ $ pwd
/home/ubelix/math/akashev

Mnemonic:

pwd stands for Print Working Directory

Whenever you use the shell, there is a concept of the current
(or "working") directory. This affects how commands search
for files and how they interpret paths.

Think of it as of "where" you are: if a server is a building
you're in, a working directory is the room you're in within that
building.

26 / 172

The Working Directory
One of the commands you executed, pwd, printed a directory
path (of your home directory, by default):

akashev@submit01:~ $ pwd
/home/ubelix/math/akashev

Usually, this information is printed in the shell prompt itself, to
remind you of the current state.

27 / 172

The Working Directory
One of the commands you executed, pwd, printed a directory
path (of your home directory, by default):

akashev@submit01:~ $ pwd
/home/ubelix/math/akashev

Usually, this information is printed in the shell prompt itself, to
remind you of the current state.

In this example it's ~, which represents the home directory.

27 / 172

The Working Directory
One of the commands you executed, pwd, printed a directory
path (of your home directory, by default):

akashev@submit01:~ $ pwd
/home/ubelix/math/akashev

Usually, this information is printed in the shell prompt itself, to
remind you of the current state.

In this example it's ~, which represents the home directory.

Here's how it would look if you were somewhere else, for
example in /var/log:

akashev@submit01:/var/log $

27 / 172

UNIX directory structure
If you're reading this tutorial, you likely already know that
files are normally organized into nested "directories" (or
"folders"). For example, on Windows you may have such a
path:

C:\folder\subfolder\file

On Linux, paths looks similarly:

/home/user/folder/subfolder/file

28 / 172

UNIX directory structure
/folder/subfolder/file

a file file
inside a directory subfolder
which is inside a directory folder
which itself is inside the root directory /

/

folder another_folder

subfolder file

file another_file

...

...

...

29 / 172

The / as directory separator
Forward slashes (/) separate the folders in the path.
Using multiple is valid, so the following is the same file:

/home/user/folder/subfolder/file
///home/user///folder/subfolder//file

30 / 172

The / as directory separator
Forward slashes (/) separate the folders in the path.
Using multiple is valid, so the following is the same file:

/home/user/folder/subfolder/file
///home/user///folder/subfolder//file

A path to a regular file never ends in /, e.g. this is not valid:

/home/user/folder/subfolder/file/

30 / 172

The / as directory separator
Forward slashes (/) separate the folders in the path.
Using multiple is valid, so the following is the same file:

/home/user/folder/subfolder/file
///home/user///folder/subfolder//file

A path to a regular file never ends in /, e.g. this is not valid:

/home/user/folder/subfolder/file/

Directories can be referred to with or without the final /:

/home/user/folder/subfolder
/home/user/folder/subfolder/

30 / 172

The / as directory separator
Forward slashes (/) separate the folders in the path.
Using multiple is valid, so the following is the same file:

/home/user/folder/subfolder/file
///home/user///folder/subfolder//file

A path to a regular file never ends in /, e.g. this is not valid:

/home/user/folder/subfolder/file/

Directories can be referred to with or without the final /:

/home/user/folder/subfolder
/home/user/folder/subfolder/

Root directory is special: / is its only name.

30 / 172

Absolute and relative paths
If a path starts with /, it's an absolute path that starts at root:

/home/user/folder/subfolder/file

31 / 172

Absolute and relative paths
If a path starts with /, it's an absolute path that starts at root:

/home/user/folder/subfolder/file

If it does not, then it's a relative path that starts at the current
working directory instead of /.

If the current working directory is

/home/user/folder

then the following paths point to the same file:

/home/user/folder/subfolder/file
subfolder/file

31 / 172

Absolute and relative paths
/home/user/folder/subfolder/file
subfolder/file

/

home var

subfolder file

file another_file

...

...

...

user another_user ...

folder another_folder ...

etc

32 / 172

Special folders . and ..
There are 2 special folders inside each folder: . and ..

. points to the folder itself.

/home/user/folder/subfolder/./file

33 / 172

Special folders . and ..
There are 2 special folders inside each folder: . and ..

. points to the folder itself.

/home/user/folder/subfolder/./file

.. points to one folder "up" in the path. At root, it points to
root itself.

/home/user/another_folder/../folder/file
/home/../../home/user/folder/file

33 / 172

Special folders . and ..
There are 2 special folders inside each folder: . and ..

. points to the folder itself.

/home/user/folder/subfolder/./file

.. points to one folder "up" in the path. At root, it points to
root itself.

/home/user/another_folder/../folder/file
/home/../../home/user/folder/file

It's mostly important for relative paths:

From /home/user/another_folder
../folder/file

33 / 172

Special folders . and ..
From /home/user/another_folder

/home/user/folder/subfolder/file
.././folder/subfolder/file

subfolder file

file another_file ...

...

/home/user

folder another_folder ...

34 / 172

Home directories
Each user has a home directory assigned.

It acts as your default working directory.

By convention, its path usually starts with /home/ and ends
with your username:

/home/<maybe something else>/username

It's frequently referred to as ~:

/home/username/folder/file
~/folder/file

You can even refer to others' home folder with ~username:

/home/someone/file
~someone/file

35 / 172

Quiz time! [1/3]
Suppose the following:

Username: userA
Home directory: /home/userA

Working directory: /scratch/folder/B
Target: /scratch/folder/A/a

Which of those paths point to the target? (click to reveal)

~/../scratch/folder/A/a

~userA/../../scratch/folder/A/a

A/a

../A/a

/scratch/./folder/A/a

36 / 172

Quiz time! [2/3]
Suppose the following:

Username: userA
Home directory: /home/userA

Working directory: /home/userA/temp
Target: ../../userB/folder/file

Which of those paths point to the target? (click to reveal)

/home/userB/userB/folder/file

/home/userB/folder/file

~/folder/file

~/../userB/folder/file

~userB/folder/file

37 / 172

Quiz time! [3/3]
Suppose the following:

Username: userA
Home directory: /home/userA

Working directory: /home/userA/folder
Target: /home/userA/folder/file

Which of those paths point to the target? (click to reveal)

file

./file

~/file

~/folder/file

/home/userA/folder/subfolder/../file

38 / 172

Preparing for training
Please execute the following command to add the exercises to
your home folder:

$ curl https://scits.math.unibe.ch/script | bash

(That's a capital O and spaces are significant)

This should be the only time you don't understand what you're
doing; by the end of Part II you should understand it.

Hint: On a Swiss German keyboard, | is AltGr + 7

39 / 172

Moving around
Now that we know:

Files and directories are organised in a tree.
There's a "current"/working directory that we are in.

We need to learn to move around in that tree.

40 / 172

Moving around
Now that we know:

Files and directories are organised in a tree.
There's a "current"/working directory that we are in.

We need to learn to move around in that tree.

For that, we need the cd command:

user@remote:~ $ cd scits-training
user@remote:~/scits-training $ pwd
/home/username/scits-training
user@remote:~/scits-training $

Acronym:

cd stands for "Change Directory"

40 / 172

Moving around
The general format of the command is cd DESTINATION, where
DESTINATION is a path (relative or absolute) to a directory.

user@remote:~ $ cd scits-training
user@remote:~/scits-training $ cd /usr/local/bin
user@remote:/usr/local/bin $

41 / 172

Moving around
The general format of the command is cd DESTINATION, where
DESTINATION is a path (relative or absolute) to a directory.

user@remote:~ $ cd scits-training
user@remote:~/scits-training $ cd /usr/local/bin
user@remote:/usr/local/bin $

To go "back up", one uses the special .. directory:

user@remote:/var/local/bin $ cd ..
user@remote:/usr/local $ cd ../..
user@remote:/ $

41 / 172

Moving around
The general format of the command is cd DESTINATION, where
DESTINATION is a path (relative or absolute) to a directory.

user@remote:~ $ cd scits-training
user@remote:~/scits-training $ cd /usr/local/bin
user@remote:/usr/local/bin $

To go "back up", one uses the special .. directory:

user@remote:/var/local/bin $ cd ..
user@remote:/usr/local $ cd ../..
user@remote:/ $

To go to your home directory, you can use ~:

user@remote:/ $ cd ~
user@remote:~ $

41 / 172

cd shortcuts
There are two useful tricks when using cd:

"cd -" goes back to the previous directory you were in:

user@remote:~ $ cd -
user@remote:/ $

And "cd" without arguments goes to your home folder:

user@remote:/ $ cd
user@remote:~ $

42 / 172

Tab-completion
This is a good point to introduce a helpful CLI tool: tab
completion

When entering a command, you can press the [Tab] key to
suggest a command, or path, based on already entered input.

user@remote:~ $ cd scits-training/a

Pressing [Tab] now completes the name, since it's the only one
that matches the beginning:

user@remote:~ $ cd scits-training/animals/

(continues on next slide)

43 / 172

Tab-completion
user@remote:~ $ cd scits-training/animals/

Pressing [Tab] once again won't change anything, since there
are mutiple choices for completion; however, if it is pressed
again, it shows possibilities:

user@remote:~ $ cd scits-training/animals/
Aardvark/ Badger/
user@remote:~ $ cd scits-training/animals/

44 / 172

Tab-completion
user@remote:~ $ cd scits-training/animals/

Pressing [Tab] once again won't change anything, since there
are mutiple choices for completion; however, if it is pressed
again, it shows possibilities:

user@remote:~ $ cd scits-training/animals/
Aardvark/ Badger/
user@remote:~ $ cd scits-training/animals/

The shell needs to know the next letter to proceed. So, we type
only "A" and press Tab again:

user@remote:~ $ cd scits-training/animals/A

44 / 172

Tab-completion
user@remote:~ $ cd scits-training/animals/

Pressing [Tab] once again won't change anything, since there
are mutiple choices for completion; however, if it is pressed
again, it shows possibilities:

user@remote:~ $ cd scits-training/animals/
Aardvark/ Badger/
user@remote:~ $ cd scits-training/animals/

The shell needs to know the next letter to proceed. So, we type
only "A" and press Tab again:

user@remote:~ $ cd scits-training/animals/Aardvark/

44 / 172

Tab-completion
user@remote:~ $ cd scits-training/animals/

Pressing [Tab] once again won't change anything, since there
are mutiple choices for completion; however, if it is pressed
again, it shows possibilities:

user@remote:~ $ cd scits-training/animals/
Aardvark/ Badger/
user@remote:~ $ cd scits-training/animals/

The shell needs to know the next letter to proceed. So, we type
only "A" and press Tab again:

user@remote:~ $ cd scits-training/animals/Aardvark/
user@remote:~/scits-training/animals/Aardvark/ $

44 / 172

Looking around
To look around in a UNIX filesystem, you use the ls command:

user@remote:~/scits-training/animals/Aardvark/ $ ls
description empty_file subfolder

Mnemonic:

ls stands for list

This lists the names for contents of the working directory.

45 / 172

Looking around
To look around in a UNIX filesystem, you use the ls command:

user@remote:~/scits-training/animals/Aardvark/ $ ls
description empty_file subfolder

Mnemonic:

ls stands for list

This lists the names for contents of the working directory.

We can specify another folder to look at:

user@remote:~/scits-training/animals/Aardvark/ $ ls ../Badger/
Arctonyx Meles Mellivora Melogale Mydaus

45 / 172

Looking around (in depth)
To show more information, we can use the -l (for long) flag:

user@remote:~/scits-training/animals/Aardvark/ $ ls -l
total 25640
-rw-r--r-- 1 username groupname 26214400 Aug 28 18:20 big_file
-rw-r--r-- 1 username groupname 754 Aug 25 17:55 description
-rw-r--r-- 1 username groupname 0 Aug 28 16:51 empty_file
drwxr-xr-x 2 username groupname 4096 Aug 28 16:52 subfolder

Important information from this output:

-rw-r--r-- is called the mode (explained in Part II).
d denotes directory in this example.
rw-r--r-- deals with permissions for the files.

username and groupname are owners of the file.
The number after groupname is the size (in bytes) of the file.

Important: for folders, it's not the size of all contents.
You need du ("disk usage") to calculate that.

The date/time after the size is the modification date.

46 / 172

Looking around (as puny humans)
One can use the flag -h (for human-readable) for more
familiar size units:

user@remote:~/scits-training/animals/Aardvark/ $ ls -l -h
total 26M
-rw-r--r-- 1 username groupname 25M Aug 28 18:20 big_file
-rw-r--r-- 1 username groupname 754 Aug 25 17:55 description
-rw-r--r-- 1 username groupname 0 Aug 28 16:51 empty_file
drwxr-xr-x 2 username groupname 4096 Aug 28 16:52 subfolder

Single-letter flags in commands can often be combined:

user@remote:~/scits-training/animals/Aardvark/ $ ls -lh
total 26M
-rw-r--r-- 1 username groupname 25M Aug 28 18:20 big_file
-rw-r--r-- 1 username groupname 754 Aug 25 17:55 description
-rw-r--r-- 1 username groupname 0 Aug 28 16:51 empty_file
drwxr-xr-x 2 username groupname 4096 Aug 28 16:52 subfolder

47 / 172

Looking around (into hidden corners)
Another often-used flag is -a (for all): it lists contents with
names that start with a dot . which are normally hidden in
UNIX.

user@remote:~/scits-training/animals/Aardvark/ $ ls -a
. .. big_file description empty_file .hidden subfolder

As usual, it can be combined with others:

user@remote:~/scits-training/animals/Aardvark/ $ ls -lah
total 26M
drwxr-xr-x 2 username groupname 4096 Aug 28 16:52 .
drwxr-xr-x 2 username groupname 4096 Aug 28 16:52 ..
-rw-r--r-- 1 username groupname 25M Aug 28 18:20 big_file
-rw-r--r-- 1 username groupname 754 Aug 25 17:55 description
-rw-r--r-- 1 username groupname 0 Aug 28 16:51 empty_file
drwxr-xr-x 2 username groupname 4096 Aug 28 16:52 subfolder
-rw-r--r-- 1 username groupname 0 Aug 28 16:51 .hidden

48 / 172

Looking around (in orderly fashion)
By default, files are ordered by name.

This behavior can be changed with flags; here are some
examples:

-r reverses the sort order.
-S sorts files by size.
-t sorts files by modification time.
-X sorts files by filename extension, e.g. png in image.png.

As usual, this can be combined with the previous ones.

Exercise:

List files in Aardvark by increasing size.

49 / 172

I'm never going to remember this!

Good news: you don't have to.
As long as you remember the command's name, you can look
up its correct usage from the terminal itself.

Image credit: https://xkcd.com/1168/

50 / 172

https://xkcd.com/1168/

Getting help
Some common methods of getting help:

Many programs support --help flag to print out their usage
instructions:

user@remote:~/scits-training/animals/Aardvark/ $ ls --help
Usage: ls [OPTION]... [FILE]...
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.

Mandatory arguments to long options are mandatory for short options too.
 -a, --all do not ignore entries starting with .
[...]

51 / 172

Getting help
Some common methods of getting help:

For most programs, you can look up their manual file with
man:

user@remote:~/scits-training/animals/Aardvark/ $ man ls

Instead of just outputting the text and returning, you'll enter a
mode for showing long files.

Look around using arrow keys and PgDn/PgUp.

Remember the hints on how to exit (here, it's q).

You can search a man page for "something" with /something and
just / to go to the next find.

52 / 172

Getting help
Some common methods of getting help:

Some commands are not separate programs, but are built
into the shell, e.g. cd. For those, you can use help:

user@remote:~/scits-training/animals/Aardvark/ $ help cd

53 / 172

Getting help
Some common methods of getting help:

Some commands are not separate programs, but are built
into the shell, e.g. cd. For those, you can use help:

user@remote:~/scits-training/animals/Aardvark/ $ help cd

You can see what help can help with as well:

user@remote:~/scits-training/animals/Aardvark/ $ help

53 / 172

Try out man
Try opening the manual for ls:

user@remote:~/scits-training/animals/Aardvark/ $ man ls

Reminders:

You can search a man page for "something" with /something
and n to go to the next find.

To exit, you can use q.

Exercise:

Try searching for the meaning of -R flag, and try to use it.

54 / 172

Reading �les
We know how to look around the filesystem (with ls) and how
to move around (with cd).

However, we still need to access the contents of files.

There are many ways to do that, I'll show a few more common
ones.

55 / 172

Simple �le reading
The simplest program to read the file is cat

user@remote:~/scits-training/animals/Aardvark/ $ ls
big_file description empty_file naming subfolder
user@remote:~/scits-training/animals/Aardvark/ $ cat description
The aardvark (ARD-vark; Orycteropus afer) is a medium-sized, burrowing,
[...]

Mnemonic:

cat comes from the word "concatenate",
which means joining things together in a series.

Exercise:

What happens if we call cat with two filenames?

cat description naming

56 / 172

File is too long!
Sometimes a file is too long to be comfortably read with cat

user@remote:~/scits-training/animals/Aardvark/ $ cd ../../numbers/
user@remote:~/scits-training/numbers/ $ cat hundred
1
2
[...]
99
100

A hundred lines is too much to fit into the terminal window.

While you can scroll to look through the output, sometimes
files are much longer than that.

We can display only parts of the file, or use a program that
allows to navigate a file.

57 / 172

Parts of a cat?
If a cat is too long, perhaps we only need to look at its
beginning (head) or end (tail):

user@remote:~/scits-training/numbers/ $ head hundred
1
[...]
10

user@remote:~/scits-training/numbers/ $ tail hundred
91
[...]
100

Those commands display the first and last 10 lines of a file,
respectively.

Mnemonic:

Remembering cat together with head and tail may help.

58 / 172

Self-help test
Of course, you can look up other options with the self-help
methods like man.

Exercise:

Use one of the help methods (man head or head --help) to
learn how to display 5 lines instead of 10 with head.

Hint: it will be a flag that should go before the filename.

59 / 172

Self-help test
Of course, you can look up other options with the self-help
methods like man.

Exercise:

Use one of the help methods (man head or head --help) to
learn how to display 5 lines instead of 10 with head.

Hint: it will be a flag that should go before the filename.

Answer: -n 5, -n5 or --lines=5

user@remote:~/scits-training/numbers/ $ head -n 5 hundred
1
2
3
4
5

59 / 172

The �le is too long, show less
One way to navigate a big file is less:

user@remote:~/scits-training/numbers/ $ less hundred

You will recognize this interface, since man also uses less.

Commands to try:

Arrow keys to scroll line by line
PgUp / PgDn to scroll screen by screen
/something to search for "something"
n to go to next found "something", N to go back
> to go to the end of the file, < to go to the beginning
h to show help
q to quit

60 / 172

Modifying �les
Besides reading, we need to be able to create and modify files.

There are many editors available, and which one is "best" can
lead to hot debate.

We will mention and briefly explain two editors that are likely
to be installed on any system you encounter nowadays.

nano
vim

61 / 172

https://xkcd.com/378/

nano

user@remote:~/scits-training/numbers/ $ nano hundred

GNU nano 2.5.3 File: hundred

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
 [Read 100 lines]
^G Get Help ^O Write Out ^W Where Is ^K Cut Text ^J Justify ^C Cur Pos
^X Exit ^R Read File ^\ Replace ^U Uncut Text^T To Spell ^_ Go To Line

62 / 172

nano

nano is a small and simple editor which helpfully shows its
commands at the bottom (reminder, ^ means Ctrl):

^G Get Help ^O Write Out ^W Where Is ^K Cut Text ^J Justify ^C Cur Pos
^X Exit ^R Read File ^\ Replace ^U Uncut Text^T To Spell ^_ Go To Line

You can use arrow keys to move around, input text as normal
from where the cursor is.

Key commands:

Ctrl + W "where is" for searching the file
Ctrl + O "write out" to save changes
Ctrl + X "exit" to get back to the shell

63 / 172

Try nano
Exercise:

1. Open a new file, ten, with nano:

user@remote:~/scits-training/numbers/ $ nano ten

2. Add numbers from 1 to 10 to it, on separate lines

3. Save and exit nano

4. Verify what's in the file using cat

64 / 172

vim

vim (or, technically, "Vi IMproved") is one of two "Swiss knife"
editors that most Linux professionals prefer to use (the other
one being emacs).

vim is available almost everywhere, and with proper
configuration can do very sophisticated things.

With power comes complexity, but for basic editing one
doesn't have to remember a lot.

If you wish to (later) explore vim, you can go through its built-
in tutorial:

vimtutor

65 / 172

66 / 172

http://www.commitstrip.com/en/2017/05/29/trapped/

Organizing �les and folders
To recap, you should now be able to:

Navigate the file tree (with cd)
List folder contents (with ls)
Read and write files (with nano)

Our goal now is:

Make new folders
To move and copy files and folders around
Delete files and folders

67 / 172

Creating new folders
To create new folders, use the mkdir command:

user@remote:~/scits-training/numbers/ $ cd ..
user@remote:~/scits-training/ $ ls
animals numbers
user@remote:~/scits-training/ $ mkdir new-folder
user@remote:~/scits-training/ $ ls
animals new-folder numbers

Mnemonic:

mkdir stands for make directory

Exercise:

1. Create new-folder as shown above

2. Create directory subfolder inside it

3. Verify with ls

68 / 172

Creating new folders
mkdir will fail if the folder already exists:

user@remote:~/scits-training/ $ mkdir new-folder
mkdir: cannot create directory ‘new-folder’: File exists

Using it with -p means "create if needed", and also works with
chains of directories:

user@remote:~/scits-training/ $ mkdir -p new-folder/subfolder/subsubfolder
user@remote:~/scits-training/ $ ls -R new-folder
new-folder:
subfolder

new-folder/subfolder:
subsubfolder

new-folder/subfolder/subsubfolder:
user@remote:~/scits-training/ $

69 / 172

Preparing for moving exercises
user@remote:~/scits-training/ $ cd moving
user@remote:~/scits-training/moving $ ls
source destination
user@remote:~/scits-training/moving $ ls -R source
source:
data_2019-05-27 data_2019-05-31 data_2019-06-04
data_2019-05-28 data_2019-06-01 data_2019-06-05
data_2019-05-29 data_2019-06-02 experiment_A
data_2019-05-30 data_2019-06-03 experiment_B

source/experiment_A:
input_0 input_3 output_1 output_4 output_7
input_1 input_4 output_2 output_5
input_2 output_0 output_3 output_6

source/experiment_B:
input_0 input_3 output_1 output_4 output_7
input_1 input_4 output_2 output_5
input_2 output_0 output_3 output_6
user@remote:~/scits-training/moving $ ls destination
user@remote:~/scits-training/moving $

70 / 172

Moving �les
Move operations can be broken down into two cases:

1. Moving files and folders between folders:

folder1/something → folder2/something

2. Renaming files and folders:

something → other

Technically, it's "moving" from old name to new.

Both cases are served with the mv command.

Mnemonic:

mv stands for move

71 / 172

Moving �les
To move something to another folder: mv NAME DESTINATION, as
long as the DESTINATION is a directory that exists.

user@remote:~/scits-training/moving $ mv source/data_2019-05-27 destination

You can specify multiple things to move at the same time,
including folders:

$ mv source/data_2019-06-05 source/experiment_B destination

Moves both source/data_2019-06-05 and source/experiment_B
into destination.

Exercise:

Move experiment_B back into source

72 / 172

Renaming
To rename: mv OLDNAME NEWNAME, if NEWNAME is not an existing
directory.

For example, let's rename destination to dest:

user@remote:~/scits-training/moving $ mv destination dest

If you're renaming something in another folder, you must
specify the path twice:

$ mv destination/data_2019-06-05 destination/data_2019-07-05

Exercise:

Rename dest back into destination

73 / 172

Move + rename
Exercise:

Try the following from ~/scits-training/moving:

$ mv source/data_2019-06-06 data_2019-07-06

Use ls -R to understand what happened

74 / 172

Move + rename
Exercise:

Try the following from ~/scits-training/moving:

$ mv source/data_2019-06-06 data_2019-07-06

Use ls -R to understand what happened

Answer: Since there is no path for the second name, it moved
into the current directory and got renamed:

~/scits-training/moving/source/data_2019-06-06

↓

~/scits-training/moving/data_2019-07-06

74 / 172

Copying
Copying is done with cp

Mnemonic:

cp stands for copy.

Syntax is the same:

For copying to another directory, cp NAME DESTINATION
For copying to another name, cp OLDNAME NEWNAME

75 / 172

Copying
Copying is done with cp

Mnemonic:

cp stands for copy.

Syntax is the same:

For copying to another directory, cp NAME DESTINATION
For copying to another name, cp OLDNAME NEWNAME

Exercise:

1. Copy source/data_2019-06-03 and source/data_2019-06-04
into destination (can you do it in one command?)

2. Copy and rename source/data_2019-06-04 into
source/data_2019-07-04

75 / 172

Copying folders
cp, unlike mv, will not copy directories by default:

$ cp source/experiment_B destination
cp: omitting directory 'source/experiment_B'

76 / 172

Copying folders
cp, unlike mv, will not copy directories by default:

$ cp source/experiment_B destination
cp: omitting directory 'source/experiment_B'

You need to use -R (or -r) to copy folders + content

$ cp -R source/experiment_B destination

Mnemonic:

-R stands for recursive

76 / 172

Deleting
To remove files or folders, use rm

Mnemonic:

rm stands for remove

rm NAME to remove a file
rm -r FOLDER to remove a folder

You can pass several names at once:

$ rm destination/experiment_B/input_0 destination/experiment_B/output_0

77 / 172

rm is unrecoverable!
When you delete files and folders with rm, you should be
aware that there is no concept of "Trash".

Anything you delete (or overwrite) is lost with no easy way to
recover.

You can use a flag -i to ask before any destructive operation.

user@remote:~/scits-training/moving $ cp -i -R source/experiment_B destination
cp: overwrite 'destination/experiment_B/input_1'?

On the other hand, sometimes you want to override those
confirmations, especially for rm – you can do it with -f.

Mnemonic:

-i stands for interactive
-f stands for force

78 / 172

Wildcards
There are many similar-named files in source:

user@remote:~/scits-training/moving $ ls source
data_2019-05-27 data_2019-05-31 data_2019-06-04
data_2019-05-28 data_2019-06-01 data_2019-06-05
[...]

We may want to copy them all at once. We can use wildcards:

* in a name means "any amount of any characters"
For example, A* can mean A, A1 and A10

? in a name means "any single character"
For example, A? can mean A1, A6 but not A10

The wildcards will not jump through directories:

*1 can mean A1, A11, but not subfolder/B1
/ can match subfolder/B1

79 / 172

Wildcard quiz (1/3)
Which of the following names match the pattern A*a*

AAa

A/a

aaA

CBAcba

abcABC

80 / 172

Wildcard quiz (2/3)
Which of the following names match the pattern A?a?

AAa

AAaa

Aaaa

AAaaa

aAAaa

81 / 172

Wildcard quiz (3/3)
Which of the following patterns match the name A110

A*

*

A

*A

A???

82 / 172

Using wildcards
Putting a name with a wildcard is equivalent to putting all
names that match:

$ cp -r source/experiment_* destination

is equivalent to

$ cp -r source/experiment_A source/experiment_B destination

So, you can use wildcards in any command that expects
multiple files.

83 / 172

Using wildcards
Putting a name with a wildcard is equivalent to putting all
names that match:

$ cp -r source/experiment_* destination

is equivalent to

$ cp -r source/experiment_A source/experiment_B destination

So, you can use wildcards in any command that expects
multiple files.

If no files match, the argument will be left as-is. Compare:

$ echo *
$ echo does_not_exist*
$ echo "*"

83 / 172

Try wildcards
From ~/scits-training/moving, do the following:

Exercise:

1. List all data files from June inside source.

2. Copy all data files from July from source into
destination.

3. Move all files starting with input from
source/experiment_A into destination.

4. Delete all files with names ending with 1 from
destination.

Use wildcards to do each point as one command.

84 / 172

Brace expansion
The bash shell (default on most systems) provides a useful
mechanism called braces.

It allows to specify substitutions that get expanded to a list:

$ echo {1,2,3}
1 2 3
$ echo a{b,c,de,}f
abf acf adef af

85 / 172

Brace expansion
The bash shell (default on most systems) provides a useful
mechanism called braces.

It allows to specify substitutions that get expanded to a list:

$ echo {1,2,3}
1 2 3
$ echo a{b,c,de,}f
abf acf adef af

Multiple braces can be combined:

$ echo {A,B,C}{1,2,3}
A1 A2 A3 B1 B2 B3 C1 C2 C3

You can also use ranges:

$ echo {1..12}
1 2 3 4 5 6 7 8 9 10 11 12

85 / 172

Brace expansion example
Braces are extremely useful for renaming to avoid repeating
the path.

user@remote:~/scits-training/moving $ mv source/experiment_{B,C}
user@remote:~/scits-training/moving $ mv source/experiment_C/input_1{,.old}

Exercise:

Use braces to delete input_2 and output_2 inside
destination/experiment_B in one command.

86 / 172

Introduction to Linux
Part II

https://goo.gl/Vg3iXW#part2

87 / 172

Agenda
1. Linux resources you can use
2. Moving data from/to a remote Linux system
3. Standard input/output and its redirection
4. Background processes
5. Durable sessions with screen
6. File ownership and permissions
7. Shell scripting basics
8. Environment and customization
9. (Extra credits)

88 / 172

What Linux resources can I use?
To do development and run light workloads:

Your own computer may already run Linux.

You can install Linux in a virtual machine.

I recommend Virtualbox for personal use.

If you're running Windows 10, you can install
Windows Subsystem for Linux

89 / 172

https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux

What if it's not enough?
To create persistent services:

Ask your group's sysadmin for servers/VM resources.

UniBe Informatikdienste offers virtual machines.

Cloud resources: SWITCHengines, other cloud services.

To run heavy calculations:

UBELIX Linux cluster.

Your group may have in-house infrastructure.

Again, cloud services.

90 / 172

https://www.switch.ch/engines/
https://docs.id.unibe.ch/ubelix/ubelix-101

Moving data in and out
So far we have moved the data around on the system itself.

It doesn't help if you want to load external data or download
the results of your programs.

91 / 172

Moving data in and out
So far we have moved the data around on the system itself.

It doesn't help if you want to load external data or download
the results of your programs.

Perhaps, it's your own system and you have access to cloud
storage or external storage devices.

Sometimes, you have a shared network folder between your
computer and the target system.

But how to do it, if your only interface to the server is SSH?

91 / 172

Moving data in and out
So far we have moved the data around on the system itself.

It doesn't help if you want to load external data or download
the results of your programs.

Perhaps, it's your own system and you have access to cloud
storage or external storage devices.

Sometimes, you have a shared network folder between your
computer and the target system.

But how to do it, if your only interface to the server is SSH?

We will cover two ways:

1. Downloading data from the Internet with wget

2. Copying data between computers with scp

91 / 172

Downloading from the shell
Sometimes, the data you need is a file on the Internet.

wget is the simplest-to-use tool for it:

user@remote:~/scits-training/moving $ cd ..
user@remote:~/scits-training/ $ wget https://example.com/
--2017-09-12 12:00:00-- https://example.com/
Resolving example.com (example.com)... 93.184.216.34
Connecting to example.com (example.com)|93.184.216.34|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1270 (1.2K) [text/html]
Saving to: ‘index.html’

100%[======================================>] 1,270 --.-K/s in 0s

2017-09-12 12:00:00 (36.2 MB/s) - ‘index.html’ saved [1270/1270]

user@remote:~/scits-training/ $ tail index.html

Mnemonic:

wget stands for Web get

92 / 172

Downloading from the shell
Notable option: renaming the file immediately.

-O (for output) chooses a specific file to write to

$ wget https://tools.ietf.org/rfc/rfc1149.txt -O april.txt
[...]
$ less april.txt

As usual, use man wget to see more options.

It can work with HTTP/HTTPS/FTP-hosted files.

93 / 172

Downloading from the shell
Notable option: renaming the file immediately.

-O (for output) chooses a specific file to write to

$ wget https://tools.ietf.org/rfc/rfc1149.txt -O april.txt
[...]
$ less april.txt

As usual, use man wget to see more options.

It can work with HTTP/HTTPS/FTP-hosted files.

curl is another option, which simply outputs the file.

$ curl https://scits.math.unibe.ch/script

We'll see how to actually use that in a little bit.

93 / 172

Transferring �les between systems
To send files between two computers using SSH, the simplest
command is scp.

Mnemonic:

scp stands for secure copy

scp behaves a lot like cp, but you can provide locations on
other computers.

How to use scp on your own machine depends on the OS.

94 / 172

scp on Linux / MacOS (/ Win10)
From your local terminal, you can transfer a file from a
remote system:

local.user@local:~ $ scp user@remote:~/scits-training/numbers/hundred .
[..some authentication..]
local.user@local:~ $ less hundred

scp's parameters work similarly to cp, but you can refer to files
on other systems by adding user@remote: to the path.

It works both ways, and can rename as well:

$ scp hundred user@submit.unibe.ch:~/scits-training/numbers/another_hundred

95 / 172

Graphical scp on Windows+PuTTY
While PuTTY includes a command-line client pscp with the
same functions, it may be better to use a GUI client WinSCP.

It can be downloaded from https://winscp.net/

You can then connect using SCP (or SFTP) with your normal
credentials and transfer files between your PC and the remote:

96 / 172

https://winscp.net/

Moving data in and out
Exercise:

1. Copy all input-files from moving/source/experiment_A to
your computer with one command (use wildcards).

2. Copy some folder from your computer to the home
folder of the remote system (hint: you'll use -r).

Hint: you'll need to run it in your local terminal!

97 / 172

Moving data in and out
Exercise:

1. Copy all input-files from moving/source/experiment_A to
your computer with one command (use wildcards).

2. Copy some folder from your computer to the home
folder of the remote system (hint: you'll use -r).

Hint: you'll need to run it in your local terminal!

In addition to scp, there's a command that works better for
repeatedly copying large folders with small changes: rsync.

It will not be covered here, but look up information on it if it's
your use case.

97 / 172

Processes and their input/output
When you're connected to a Linux system, what you normally
see is the shell prompt, awaiting input:

user@host:~ $

A process called shell is responsible for input/output at this
moment.

By default, the input is either a keyboard connected to the
system, or your keypresses being relayed over the network.

The output, by default, is the screen connected to the system,
or text being relayed for display over the network.

98 / 172

Processes and their input/output
Those are called standard input and standard output, or
STDIN/STDOUT.

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

99 / 172

Processes and their input/output
Those are called standard input and standard output, or
STDIN/STDOUT.

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

If the user issues a command that calls another program, the
shell creates a child process and attaches the input/output to
it.

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

command

The shell will wait until the program terminates, after which
STDIN/STDOUT get reattached and a prompt is displayed.

99 / 172

Redirecting output
Sometimes, we want to capture what a command is outputting
to the screen.

For example, suppose that we want to save into a file the
directory structure returned by ls -R:

user@host:~ $ ls -R ~/scits-training
scits-training:
animals moving numbers io scripts
[...]
user@host:~ $

We can instruct the shell to redirect the standard output:

bash shellbash shellStandard input
STDIN

command

Standard output
STDOUT

File output
command.log

100 / 172

Redirecting output
To redirect the output, we add > FILE to the command:

user@host:~ $ cd ~/scits-training/io
user@host:~/scits-training/io $ ls -R ~/scits-training > listing
user@host:~/scits-training/io $ cat listing
scits-training:
animals moving numbers io scripts
[...]

This will overwrite the contents of FILE (if any) with the output
of the command.

The file will be created, if it does not exist yet.

101 / 172

Appending output
Sometimes we don't want to overwrite (sometimes called
"clobber") the file with new contents and add them to the end
instead.

To do that, use >> FILE instead of > FILE.

Exercise:

1. Try running the command date to see what it outputs.

2. Run date 3 times, appending the output to a file date.log.

3. Verify with cat that the file contains 3 records.

102 / 172

Error output
Try saving the output of a command with errors and you'll see
that it still outputs to the screen:

user@host:~/scits-training/io $ ls , > listing
ls: cannot access ,: No such file or directory
user@host:~/scits-training/io $

103 / 172

Error output
Try saving the output of a command with errors and you'll see
that it still outputs to the screen:

user@host:~/scits-training/io $ ls , > listing
ls: cannot access ,: No such file or directory
user@host:~/scits-training/io $

This is intentional: Linux actually has two output streams for
its command line, STDOUT for normal data and STDERR for
errors.

processbash shellStandard input
STDIN

Standard output
STDOUT

Error output
STDERR

This simplifies debugging: errors are separate from data.

103 / 172

Error output
STDERR is not redirected when using > or >>:

bash shellbash shellStandard input
STDIN

command

Standard output
STDOUT

File output
command.log

Error output
STDERR

104 / 172

Error output
STDERR is not redirected when using > or >>:

bash shellbash shellStandard input
STDIN

command

Standard output
STDOUT

File output
command.log

Error output
STDERR

It's possible to redirect it as well with 2> or 2>>:

user@host:~/scits-training/io $ ls .. , > listing 2> errors
user@host:~/scits-training/io $ cat errors
ls: cannot access ,: No such file or directory
user@host:~/scits-training/io $ cat listing
..:
animals io moving numbers scripts

104 / 172

Discarding output
Sometimes we don't need output at all.

In this case, we can redirect it to a special file, /dev/null

It's a device that will accept any input, discarding it
immediately.

105 / 172

Discarding output
Sometimes we don't need output at all.

In this case, we can redirect it to a special file, /dev/null

It's a device that will accept any input, discarding it
immediately.

For example, one might want to silence errors:

user@host:~/scits-training/io $ ls .. , 2> /dev/null
..:
animals io moving numbers scripts

105 / 172

Interactive input
Most commands we've seen don't require any interactive
input.

tr (for translate) is a command that transforms its input: it
substitutes some characters with others.

For example, tr 'a-z' 'A-Z' would translate all lowercase
letters into uppercase.

106 / 172

Interactive input
Most commands we've seen don't require any interactive
input.

tr (for translate) is a command that transforms its input: it
substitutes some characters with others.

For example, tr 'a-z' 'A-Z' would translate all lowercase
letters into uppercase.

Let's try this:

user@host:~/scits-training/io $ tr 'a-z' 'A-Z'
Let's input some text
LET'S INPUT SOME TEXT

106 / 172

Interactive input
user@host:~/scits-training/io $ tr 'a-z' 'A-Z'
Let's input some text
LET'S INPUT SOME TEXT
But enter doesn't stop it!
BUT ENTER DOESN'T STOP IT!

A problem: text can contain many lines, and the program
won't know when to stop.

107 / 172

Interactive input
user@host:~/scits-training/io $ tr 'a-z' 'A-Z'
Let's input some text
LET'S INPUT SOME TEXT
But enter doesn't stop it!
BUT ENTER DOESN'T STOP IT!

A problem: text can contain many lines, and the program
won't know when to stop.

We can terminate the program with Ctrl+C, but it actually
expects an end of input.

We can signal end of input with Ctrl+D on an empty line (or
pressing it twice).

107 / 172

Interactive input
user@host:~/scits-training/io $ tr 'a-z' 'A-Z'
Let's input some text
LET'S INPUT SOME TEXT
But enter doesn't stop it!
BUT ENTER DOESN'T STOP IT!

A problem: text can contain many lines, and the program
won't know when to stop.

We can terminate the program with Ctrl+C, but it actually
expects an end of input.

We can signal end of input with Ctrl+D on an empty line (or
pressing it twice).

Exercise:

What happens if we press Ctrl+D while back at the shell
prompt?

107 / 172

Redirecting input
What if we want to use a file as an input in a command that
doesn't accept files as arguments, we need instruct the shell to
use the file as the program's standard input:

bash shellbash shellStandard input
STDIN

command

Standard output
STDOUT

Error output
STDERR

File input
data

This is done with adding < FILE to the command.

user@host:~/scits-training/io $ tr 'a-z' 'A-Z' < errors
LS: CANNOT ACCESS ,: NO SUCH FILE OR DIRECTORY

108 / 172

Redirects
Exercise:

1. Combine input and output redirection to save the output
of last tr command into errors.uppercase

2. Use cat to verify the saved output.

109 / 172

Pipes
We have shown how to save outputs to a file, and further
process files as inputs.

Sometimes, we don't need to save this intermediate
representation. In that case, we can directly connect the
output of one program to the input of another with pipes.

To do so, separate two commands with |:

user@host:~/scits-training/io $ ls . | tr 'a-z' 'A-Z'
DATE.LOG
ERRORS
ERRORS.UPPERCASE
LISTING

110 / 172

Pipes
user@host:~/scits-training/io $ ls . | tr 'a-z' 'A-Z'
DATE.LOG
ERRORS
ERRORS.UPPERCASE
LISTING

Given this command, shell starts two processes in parallel and
ties their respective output and input together.

Standard input/output is connected at the ends of the chain:

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

command 1 command 2

111 / 172

Pipes
user@host:~/scits-training/io $ ls . | tr 'a-z' 'A-Z'
DATE.LOG
ERRORS
ERRORS.UPPERCASE
LISTING

Given this command, shell starts two processes in parallel and
ties their respective output and input together.

Standard input/output is connected at the ends of the chain:

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

command 1 command 2

Such pipelines can be longer than two commands, and can be
combined with file redirects.

111 / 172

Example: Filtering output
One extremely useful command used in pipes is grep.

It allows to search for text patterns. Example:

user@host:~/scits-training/io $ ls .
date.log
errors
errors.uppercase
listing
user@host:~/scits-training/io $ ls . | grep log
date.log

grep is versatile:

Can be used with regular expression patterns
Can search for non-matching lines (with -v)
Can search in files
Can print where the match happened in a file

See man grep or Google for more examples.
112 / 172

Pipes and errors
You will notice that all errors are still output normally:

user@host:~/scits-training/io $ ls . , | tr 'a-z' 'A-Z'
ls: cannot access ,: No such file or directory
.:
DATE.LOG
ERRORS
ERRORS.UPPERCASE
LISTING

113 / 172

Pipes and errors
You will notice that all errors are still output normally:

user@host:~/scits-training/io $ ls . , | tr 'a-z' 'A-Z'
ls: cannot access ,: No such file or directory
.:
DATE.LOG
ERRORS
ERRORS.UPPERCASE
LISTING

As before, errors are not normally redirected, and collected
from all processes in the pipe:

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

command 1 command 2

Error output
STDERR 113 / 172

Background jobs
Recall that, when running a command, the shell waits until it
is terminated: all input goes to the program (or nowhere).

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

command

Sometimes, we don't need to wait until the program
terminates – we actually want it running in background.

114 / 172

Background jobs
If you specify & at the end of the command, the shell will start
it, but keep control of STDIN:

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

command &

Instead of a foreground process, it becomes a background
job.

115 / 172

Background jobs
If you specify & at the end of the command, the shell will start
it, but keep control of STDIN:

bash shellbash shellStandard input
STDIN

Standard output
STDOUT

command &

Instead of a foreground process, it becomes a background
job.

You are immediately returned to the shell and can run other
commands while the job executes.

Note that both the shell and the background job are connected
to STDOUT. Redirect output to prevent mix-ups.

115 / 172

Background jobs
Compare:

user@host:~/scits-training/io $ sleep 3
user@host:~/scits-training/io $ sleep 3 &
[1] 12231
user@host:~/scits-training/io $

Here, [1] is the job number, and 12231 is the process ID, or
PID.

After 3 seconds and when another command finishes (you can
just press Enter for an empty command), you'll be informed
that the job terminated:

user@host:~/scits-training/io $
[1]+ Done sleep 3
user@host:~/scits-training/io $

116 / 172

Listing jobs
You can list running background jobs with jobs:

user@host:~/scits-training/io $ sleep 100 &
[1] 12232
user@host:~/scits-training/io $ sleep 0 &
[2] 12233
user@host:~/scits-training/io $ jobs
[1]- Running sleep 100 &
[2]+ Done sleep 0

117 / 172

Terminating jobs
You can forcibly terminate a job with the kill command,
which accepts either PID or job ID (with %):

user@host:~/scits-training/io $ sleep 100 &
[1] 12234
user@host:~/scits-training/io $ kill 12234
user@host:~/scits-training/io $ jobs
[1]+ Terminated sleep 100

user@host:~/scits-training/io $ sleep 100 &
[1] 12235
user@host:~/scits-training/io $ kill %1

You can search for more process IDs to terminate with ps ax,
in case something is misbehaving.

118 / 172

Stopped jobs
Background jobs have nothing connected to their standard
input.

If a background job cannot continue without user input, it will
stop, which the shell will signal to you:

user@host:~/scits-training/io $ tr 'a-z' 'A-Z' &
[1] 12236
user@host:~/scits-training/io $
[1]+ Stopped tr /a-z/ /A-Z/
user@host:~/scits-training/io $

119 / 172

Stopped jobs
Background jobs have nothing connected to their standard
input.

If a background job cannot continue without user input, it will
stop, which the shell will signal to you:

user@host:~/scits-training/io $ tr 'a-z' 'A-Z' &
[1] 12236
user@host:~/scits-training/io $
[1]+ Stopped tr /a-z/ /A-Z/
user@host:~/scits-training/io $

You can bring a job to foreground to pass STDIN from the
shell to the running job with fg (or fg %N for a specific job
number):

user@host:~/scits-training/io $ fg
tr /a-z/ /A-Z/
You are now talking to the job
YOU ARE NOW TALKING TO THE JOB

119 / 172

Stopping and resuming programs
You can stop most currently-running programs with Ctrl+Z:

user@host:~/scits-training/io $ sleep 100
^Z
[1]+ Stopped sleep 100
user@host:~/scits-training/io $

120 / 172

Stopping and resuming programs
You can stop most currently-running programs with Ctrl+Z:

user@host:~/scits-training/io $ sleep 100
^Z
[1]+ Stopped sleep 100
user@host:~/scits-training/io $

From there, you can use fg to resume normal execution of the
program, or use bg to let it continue to run in the background.

user@host:~/scits-training/io $ bg
[1]+ sleep 100 &
user@host:~/scits-training/io $ jobs
[1]+ Running sleep 100 &

120 / 172

Background jobs are fragile
What will happen if you start a background job, and then close
the terminal?

121 / 172

Background jobs are fragile
What will happen if you start a background job, and then close
the terminal?

Closing the terminal (or disconnecting the SSH session) kills
the shell you were talking to. Since the job was a child
process of that shell, it will also be killed.

121 / 172

Background jobs are fragile
What will happen if you start a background job, and then close
the terminal?

Closing the terminal (or disconnecting the SSH session) kills
the shell you were talking to. Since the job was a child
process of that shell, it will also be killed.

A minor inconvenience if you're working on your own
machine (you can just leave the terminal open), but a much
bigger problem with remote connections.

If the connection is broken, the shell is also terminated along
with all processes launched from it.

How to protect against it?

121 / 172

screen

To protect your session, you can use screen.

screen starts a new shell that exists independently of your
current one.

Even if the current shell dies (e.g. because you disconnected),
the shell running in screen will continue together with all its
child processes.

122 / 172

screen

To protect your session, you can use screen.

screen starts a new shell that exists independently of your
current one.

Even if the current shell dies (e.g. because you disconnected),
the shell running in screen will continue together with all its
child processes.

Starting a new screen session is simple:

user@host:~/scits-training/io $ screen
[terminal screen is cleared]
user@host:~/scits-training/io $ echo "Hello, I'm in a screen"
Hello, I'm in a screen!
user@host:~/scits-training/io $

122 / 172

Reattaching to screen
Now suppose your connection was terminated.

Close the terminal where it is running to simulate that, then
log in again.

123 / 172

Reattaching to screen
Now suppose your connection was terminated.

Close the terminal where it is running to simulate that, then
log in again.

You can use screen -ls to list active sessions:

user@host:~ $ screen -ls
There is a screen on:
 13383.pts-2.host (11/09/17 03:02:23) (Detached)
1 Socket in /var/run/screen/S-user.

123 / 172

Reattaching to screen
Now suppose your connection was terminated.

Close the terminal where it is running to simulate that, then
log in again.

You can use screen -ls to list active sessions:

user@host:~ $ screen -ls
There is a screen on:
 13383.pts-2.host (11/09/17 03:02:23) (Detached)
1 Socket in /var/run/screen/S-user.

You can attach to a screen session (possibly detaching it first, if
it's being used somewhere) with -dR (for detach, reattach)

user@host:~ $ screen -dR
[terminal screen is cleared]
user@host:~/scits-training/io $ echo "Hello, I'm in a screen"
Hello, I'm in a screen!
user@host:~/scits-training/io $

123 / 172

Controlling screen
screen can be used for other things, such as having multiple
parallel shell sessions open.

Controlling screen consists of pressing Ctrl+A, then a screen-
specific command.

For example,

c will create a new shell within screen
n will switch to the next shell
d will detach from screen, returning you to the original
shell

Finally, you can use ? to access built-in help, or use man screen
for a more detailed manual.

124 / 172

Controlling screen
screen can be used for other things, such as having multiple
parallel shell sessions open.

Controlling screen consists of pressing Ctrl+A, then a screen-
specific command.

For example,

c will create a new shell within screen
n will switch to the next shell
d will detach from screen, returning you to the original
shell

Finally, you can use ? to access built-in help, or use man screen
for a more detailed manual.

Another popular alternative to screen is tmux. It will not be
covered by this tutorial, but is worth looking into.

124 / 172

Users and groups
Before we discuss permissions, we need to understand users
and groups in Linux.

A user is a unit of access control; it has a set of credentials to
access the system and owns some files on it.

A group is a collection of users to facilitate shared access to
resources. A user can belong to many groups but one group is
considered primary.

You can use id to check your user and groups:

akashev@submit01:~ $ id
uid=7265(akashev) gid=1109(math) groups=1109(math),902(l_gaussian)

Here, akashev is my user, math is my primary group and
l_gaussian is another group I belong to.

125 / 172

Permissions: rwx
Each file and directory in UNIX filesystems has 3 permissions
(for a particular user).

Regular files:

r, or Read, means that you can read the contents of a file.
w, or Write, means that you can modify the file.
x, or eXecute, means that the file may be launched as a
program.

Directories:

r means that you can read the list of files within the
directory.
w means that you can add or delete files from the directory.
x means you can traverse the folder: enter it with cd and
read the contents of its files.

126 / 172

Inspecting permissions
Try running ls -la to see permissions on files and folders:

$ ls -la
total 20
drwxrwxr-x 2 user group 4096 Sep 11 01:26 .
drwxrwxr-x 6 user group 4096 Sep 10 23:06 ..
-rw-rw-r-- 1 user group 90 Sep 10 23:08 date.log
-rw-rw-r-- 1 user group 47 Sep 11 00:50 errors
-rw-rw-r-- 1 user group 30 Sep 11 01:09 listing

We're interested in the first column: the cryptic drwxrwxr-x and
-rw-rwr--, which are called mode.

127 / 172

Inspecting permissions
Try running ls -la to see permissions on files and folders:

$ ls -la
total 20
drwxrwxr-x 2 user group 4096 Sep 11 01:26 .
drwxrwxr-x 6 user group 4096 Sep 10 23:06 ..
-rw-rw-r-- 1 user group 90 Sep 10 23:08 date.log
-rw-rw-r-- 1 user group 47 Sep 11 00:50 errors
-rw-rw-r-- 1 user group 30 Sep 11 01:09 listing

We're interested in the first column: the cryptic drwxrwxr-x and
-rw-rwr--, which are called mode.

The first character denotes the file type.
- means "regular file".
d means "directory".

The rest is divided in groups of three:
Access for the owner
Access for the group
Access for everyone else

127 / 172

File ownership
drwxrwxr-x 2 user group 4096 Sep 11 01:26 .
-rw-rw-r-- 1 user group 90 Sep 10 23:08 date.log

Each file in a UNIX filesystem has an owner and a group
attached.

In the example above, user is the owner and group is the
designated group.

Note that the user doesn't have to be in the assigned group.

128 / 172

E�ective permissions
-rwxr-x--- 1 user group 90 Sep 10 23:08 script

To determine which permissions apply, the following is
checked:

If the user is the owner, the first set applies (rwx, full
permissions)
If the user is in the designated group, the second set
applies (r-x, so cannot write)
For all other users, the third set applies (---, so cannot do
anything)

129 / 172

E�ective permissions
-rwxr-x--- 1 user group 90 Sep 10 23:08 script

To determine which permissions apply, the following is
checked:

If the user is the owner, the first set applies (rwx, full
permissions)
If the user is in the designated group, the second set
applies (r-x, so cannot write)
For all other users, the third set applies (---, so cannot do
anything)

A special user, superuser (normally called root), can
completely disregard permissions and do anything to any file
on the system.

129 / 172

Permissions: �rst match applies
Note that the system does not apply "best" permissions – only
the first set that matches.

Let's reverse the situation:

----r-xrwx 1 user group 90 Sep 10 23:08 script

For this file, the owner cannot do anything to the file, anyone
in group cannot modify it, but everyone else has full
permissions.

Note: the owner can always change a file's permissions.

130 / 172

Modifying permissions
To modify a file's permissions, use chmod CHANGES FILE

Mnemonic:

chmod stands for change mode.

Possible changes:

+r, +w, +x add permissions. Can combine: +rw
-r removes permissions.
=r sets pemissions to exactly r--.
Prefix u changes permissions for the user, e.g. u+r.
Prefix g changes permissions for the group, e.g. g+rw.
Prefix o changes permissions for others, e.g. o-w.
Prefix a or no prefix changes permissions for all three sets.
An octal number (e.g. 750) sets permissions to a specific
configuration (in this case, rwxr-x---).

131 / 172

Modifying permissions
Several changes can be applied at once, separated by
commas:

user@host:~/scits-training/io $ ls -la date.log
-rwxrw-r-- 1 user group 90 Sep 10 23:08 date.log

user@host:~/scits-training/io $ chmod u+x,g=rx,o-r date.log

user@host:~/scits-training/io $ ls -la date.log
-rwxr-x--- 1 user group 90 Sep 10 23:08 date.log

Exercise:

Modify permissions on the file to be r-xr--rw-

132 / 172

Changing ownership
Similarly to chmod, the chown command allows changing a file's
owner and group.

chown USER FILE changes the owner
chown :GROUP FILE changes the group
chown USER:GROUP FILE changes both

Note: once the owner is changed, the old owner no longer can
modify access to the file.

For this reason, only administrators can change the file
owner, or assign a group the owner is not part of.

Exercise:

Use groups to list groups you belong to. Change any file's
group to one of them.

133 / 172

Shell scripting
Shell is not just an interface to launch other programs; it
comes with its own scripting language to automate complex
tasks.

You can have variables, loops, conditionals – a full-featured
programming language.

We will only show the very basics.

Exercise:

Navigate to ~/scits-training/scripts and open boom.sh in
your favourite editor (nano, vim)

134 / 172

Shell scripting
#!/bin/bash

I hope you get the reference
echo "Someone set up us the bomb."
for i in {5..1}
do
 echo "$i.."
 sleep 1
done
explosion="Boom!"
echo $explosion

The first line of the script is special:

#!/bin/bash

It's called a "shebang" (for shell and "!" bang).

It tells the shell what to execute the rest of the script with.
Since we're writing a bash shell script, we put there the path to
/bin/bash itself.

135 / 172

Shell scripting
#!/bin/bash

I hope you get the reference
echo "Someone set up us the bomb."
for i in {5..1}
do
 echo "$i.."
 sleep 1
done
explosion="Boom!"
echo $explosion

Other lines starting with # are comments

I hope you get the reference

They are ignored by bash and are used to leave notes to
yourself or others.

136 / 172

Shell scripting
#!/bin/bash

I hope you get the reference
echo "Someone set up us the bomb."
for i in {5..1}
do
 echo "$i.."
 sleep 1
done
explosion="Boom!"
echo $explosion

echo command outputs its arguments to STDIN.

echo "Someone set up us the bomb."

Quotes are used to make text with spaces in it a single
argument; here, they are optional.

137 / 172

Shell scripting
#!/bin/bash

I hope you get the reference
echo "Someone set up us the bomb."
for i in {5..1}
do
 echo "$i.."
 sleep 1
done
explosion="Boom!"
echo $explosion

for designates a loop: a variable i will change from 5 to 1.

for i in {5..1}
do
 # something
done

The code in # something will repeat with i as 5, 4, 3, 2 and 1.

do and done delimit the bounds of the loop.
138 / 172

Shell scripting
#!/bin/bash

I hope you get the reference
echo "Someone set up us the bomb."
for i in {5..1}
do
 echo "$i.."
 sleep 1
done
explosion="Boom!"
echo $explosion

One can use the variable in expressions prefixed by $, i.e. $i:

echo "$i.."

If there is ambiguity as to where a variable name ends, use
braces: ${i}, e.g. "Sample ${i}A" for "Sample 1A", etc.

139 / 172

Shell scripting
#!/bin/bash

I hope you get the reference
echo "Someone set up us the bomb."
for i in {5..1}
do
 echo "$i.."
 sleep 1
done
explosion="Boom!"
echo $explosion

Variables can also be simply assigned to:

explosion="Boom!"
echo $explosion

The lack of spaces around = is significant.
Otherwise Bash will try to execute explosion as a command.

140 / 172

Running a script
OK, suppose we wrote the above script. How to execute it?

1. We need to make sure that it's allowed to execute:

user@host:~/scits-training/scripts $ chmod +x boom.sh

2. For security reasons, the current directory is not
automatically considered when starting other programs.
We need to explicitly refer to it:

user@host:~/scits-training/scripts $./boom.sh

Exercise:

1. Execute the script, saving its output to a file.

2. Modify the script to count down from 10.

141 / 172

Scripting, take two
The next script you will type out yourselves.

Open a new file beer.sh in your favourite editor.

We'll write a simple script to determine if a user is old enough
to drink beer.

142 / 172

Scripting, take two
#!/bin/bash

Any bash script should start with an appropriate shebang.

We want to ask the user for his/her age; we can use the read
command.

-n prevents a line break, and note the extra space
echo -n "What's your age? "
read age

This will display a promt for the user and wait for input. The
result is then stored in the variable $age.

For simplicity, we will not check that the input is indeed a
valid number.

143 / 172

Scripting, take two
#!/bin/bash
echo -n "What's your age? "
read age

We need to make a decision based on age; we need an if-then-
else construct.

if [$age -lt 16]
then
 echo "You're too young to drink!"
else
 echo "You're old enough, have a beer!"
fi

fi here is if reversed, to close the if statement.

Conditionals in bash are a bit clunky, but -lt here stands for
less than. Again, the whitespace here is significant.

144 / 172

Scripting, take two
#!/bin/bash
echo -n "What's your age? "
read age
if [$age -lt 16]
then
 echo "You're too young to drink!"
else
 echo "You're old enough, have a beer!"
fi

Exercise:

1. Save this script to beer.sh.

2. Change the file's mode to allow execution.

3. Test the script with different values.

145 / 172

Scripting improvements
Let's add a little personal touch.

whoami is a command that returns the username. Let's edit
beer.sh to use it:

then
 echo "$(whoami), you're too young to drink!"
else
 echo "$(whoami), you're old enough, have a beer!"
fi

$(something) allows you to execute a command and substitute
the result within another command.

Exercise:

Test the new additions.

146 / 172

Scripting improvements
Let's read the age from the command line arguments.

bash automatically populates $0 with the name of the
executable, and $1, $2 and so on with arguments.

Let's use $1 as age if it's defined:

if [$1]
then
 age=$1
else
 echo -n "What's your age? "
 read age
fi

Exercise:

Test that ./beer.sh now automatically gets the age from its
first argument, and still asks if no argument is provided.

147 / 172

Return values
Whenever a program terminates, it returns a single integer to
the shell that called it; it's called the return value.

By convention:

0 means "no error".
any non-zero value means "some kind of error".

Let's return appropriate values:

then
 echo "$(whoami), you're too young to drink!"
 exit 1
else
 echo "$(whoami), you're old enough, have a beer!"
 exit 0
fi

148 / 172

Chaining commands
You can chain commands in shell with ; or &&.

; will execute commands one by one, regardless of errors.

$ command1; command2

&& will only execute the next command only if the previous
one returned 0, i.e. finished without errors.

$ command1 && command2

Exercise:

1. Apply the return value changes to beer.sh

2. Test it with ./beer.sh && echo 'Cheers!'

149 / 172

Environment variables
Your profile files can set various environment variables:
snippets of data inherited by programs running from shell.

You can see your current environment variables with:

$ env | less

150 / 172

Environment variables
Your profile files can set various environment variables:
snippets of data inherited by programs running from shell.

You can see your current environment variables with:

$ env | less

Some programs rely on environmental variables to change
their behavior. Example:

Will replace the default editor with vim in some commands
export EDITOR=vim

150 / 172

Environment variables
Environment variables work similarly to variables in a script,
except for the extra command export, which propagates this
variable to child processes.

By convention, environment variables are UPPERCASE.

151 / 172

Environment variables
Environment variables work similarly to variables in a script,
except for the extra command export, which propagates this
variable to child processes.

By convention, environment variables are UPPERCASE.

Exercise:

1. Set an ordinary varable A (A='Hello') and environment
variable B (export B='World').

2. Use echo $A and echo $B to display them.

3. Add echo $A and echo $B to a script and execute it. What
changes?

151 / 172

$PATH variable
An important variable is $PATH.

It's a colon-separated list of directories which are searched
when you try to run a program by name.

Notably, the current directory is not in $PATH.

If you have created some own scripts/programs and want
them to be available by name from anywhere, you can put
them in a folder (e.g. ~/bin) and add it to $PATH:

export PATH="$PATH:$HOME/bin"

152 / 172

$PATH variable, example
Exercise:

1. Try running beer.sh directly by name. It fails.

2. Add the folder that holds it to $PATH:

export PATH="$PATH:~/scits-training/scripts"

1. Try running beer.sh now.

2. Try going somewhere else (cd ~) and run it.

153 / 172

Aliases
If you use a certain command often, you can define a short
name for it.

For example, if you want a shorter name for ls -lh because
you always want to see human-readable sizes, you can make
an alias:

$ alias lh="ls -lh"
$ lh
total 26M
-rw-r--r-- 1 user group 25M Sep 11 07:22 big_file
-rw-r--r-- 1 user group 735 Sep 11 07:22 description
-rw-r--r-- 1 user group 0 Sep 11 07:22 empty_file
-rw-r--r-- 1 user group 551 Sep 11 07:22 naming
drwxr-xr-x 0 user group 512 Sep 11 07:22 subfolder

154 / 172

Making customizations permanent
To make exports and aliases permanent, they need to be
added either to .bash_profile or .bashrc.

Then they will apply on each opened shell.

.bash_profile is sourced at most once. Put things there
that shouldn't be called multiple times.

.bashrc is sourced almost every time bash is called, except
for initial SSH shell. To be safe, you can "include" .bashrc
into .bash_profile like this:

In .bash_profile
-f tests that file exists
source executes commands in the current shell
if [-f ~/.bashrc]; then
 source ~/.bashrc
fi

155 / 172

Extra credits

156 / 172

Let's look at our preparation script
Now you have enough knowledge to understand how we
obtained scits-training:

$ curl https://scits.math.unibe.ch/script | bash

This downloads a file, and feeds it as input to the bash shell.
What's in that file?

#!/bin/bash
echo "*** Downloading training archive.."
wget https://scits.math.unibe.ch/archive.tar.gz -O scits-training.tar.gz
echo "*** Deleting previous training folder, if any.."
rm -rf ~/scits-training
echo "*** Unpacking training folder.."
tar xzf scits-training.tar.gz
echo "*** All done!"

This is a script that gets executed and creates the folder.

157 / 172

Searching through history
There's a way to quickly search through previous commands.

Ctrl+R opens "reverse search" mode. Enter some pattern and
the closest command in history that matches will be shown.

To look into older commands, press Ctrl+R again, or Esc to
abort.

Exercise:

Try it:

1. Press Ctrl+R

2. Type in boom

3. Press Ctrl+R again to see previous commands

158 / 172

Recovering a stuck SSH session
Suppose you're in a terminal editor, and accidentally pressed
Ctrl+S to save.

Now your terminal is frozen. How to recover it?

159 / 172

Recovering a stuck SSH session
Suppose you're in a terminal editor, and accidentally pressed
Ctrl+S to save.

Now your terminal is frozen. How to recover it?

1. Specifically for Ctrl+S, you can press Ctrl+Q.

159 / 172

Recovering a stuck SSH session
Suppose you're in a terminal editor, and accidentally pressed
Ctrl+S to save.

Now your terminal is frozen. How to recover it?

1. Specifically for Ctrl+S, you can press Ctrl+Q.

2. Generally, you can send commands to your SSH client by
pressing Enter, then ~ (tilde), then a command.

159 / 172

Recovering a stuck SSH session
Suppose you're in a terminal editor, and accidentally pressed
Ctrl+S to save.

Now your terminal is frozen. How to recover it?

1. Specifically for Ctrl+S, you can press Ctrl+Q.

2. Generally, you can send commands to your SSH client by
pressing Enter, then ~ (tilde), then a command.

~. kills the SSH session - useful if stuck
~? prints help on other available commands

This doesn't work on PuTTY, but you can control it from the
window icon in the top left.

159 / 172

Custom shell prompt
The variable $PS1 contains the format template for your shell
prompt.

Throughout this training, you saw the following prompt:

user@host:~ $

You can customize it! For example:

user@host:~ $ export PS1="[\t] \u@\h:\w\\n\\$ "

[16:40:00] user@host:~
$

Want to control that precisely? Want to add color?

There's a guide for that.

160 / 172

https://www.digitalocean.com/community/tutorials/how-to-customize-your-bash-prompt-on-a-linux-vps

Finding �les
The find PATH command looks through the filesystem at PATH
to find files.

One can then filter the output with grep, or use find's own keys
for sophisticated filtering.

user@host:~ $ find ~/scits-training -name '*.sh'
/home/user/scits-training/scripts/boom.sh
/home/user/scits-training/scripts/beer.sh

161 / 172

xargs

The xargs command can be used to convert input into
arguments of another command.

xargs COMMAND will take input and pass it as separate
arguments after COMMAND:

user@host:~ $ find ~/scits-training -name '*.sh' | xargs cat
[contents of both .sh files]

This is equivalent to

user@host:~ $ cat /home/user/scits-training/scripts/boom.sh \
/home/user/scits-training/scripts/beer.sh

162 / 172

Public key authentication: theory
It can be useful to use key authentication instead of standard
password authentication.

Far more secure — suitable for internet-facing computers.
May be required in cloud environments to set new VMs.
Allows passwordless authentication for more convenience.

163 / 172

Public key authentication: theory
It can be useful to use key authentication instead of standard
password authentication.

Far more secure — suitable for internet-facing computers.
May be required in cloud environments to set new VMs.
Allows passwordless authentication for more convenience.

It is based on modern cryptography and consists of pairs of
keys: public, which you can give to others, and private, that
you keep yourself (preferably encrypted with a passphrase).

Having the private key allows you to prove that you own the
keypair to anyone having your public key, without disclosing
the private key itself.

163 / 172

Public key authentication: work�ow
When setting up public key authentication on Linux, here's the
workflow:

1. You generate a keypair: private key and public key files.

On Linux/Mac, ssh-keygen is used. On Windows, PuTTYgen
can be used.

2. You copy the public to the remote system.

3. You connect, instructing SSH to use the private key.

If it's encrypted, you're asked for the passphrase (and may
be cached in an SSH agent after that).

164 / 172

Public key authentication: work�ow
On most Linux systems, it is sufficient to have your public key
in ~/.ssh/authorized_keys file.

To copy the keypair to the remote system, ssh-copy-id script
can be used.

165 / 172

Public key authentication: work�ow
On most Linux systems, it is sufficient to have your public key
in ~/.ssh/authorized_keys file.

To copy the keypair to the remote system, ssh-copy-id script
can be used.

Otherwise, you need to create that file/folder yourself, and
make sure they have proper permissions.

user@remote:~$ ls -l ~/.ssh
total 12
drwx------ 2 user user 4096 Sep 13 2017 .
drwxr-xr-x 13 user user 4096 Sep 2 21:47 ..
-rw------- 1 user user 1159 Jan 21 2018 authorized_keys
user@remote:~$ cat .ssh/authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAA[...]j6aKfAUoXOE= some comment

165 / 172

Public key authentication: work�ow
On most Linux systems, it is sufficient to have your public key
in ~/.ssh/authorized_keys file.

To copy the keypair to the remote system, ssh-copy-id script
can be used.

Otherwise, you need to create that file/folder yourself, and
make sure they have proper permissions.

user@remote:~$ ls -l ~/.ssh
total 12
drwx------ 2 user user 4096 Sep 13 2017 .
drwxr-xr-x 13 user user 4096 Sep 2 21:47 ..
-rw------- 1 user user 1159 Jan 21 2018 authorized_keys
user@remote:~$ cat .ssh/authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAA[...]j6aKfAUoXOE= some comment

To use a key, one can use -i PRIVATE_KEY_FILE flag for ssh, or
Pageant on Windows.

165 / 172

A tiny vim tutorial

166 / 172

vim modes: command mode
A central concept of vim is modes.

When you first open a file, if you try to start writing you'll (at
best) not succeed, and at worst mangle your file and/or dig
deeper into vim.

This is because vim is by default in command mode, that uses
the entire keyboard for various command shortcuts and not
actual text input.

You can always get back to command mode by pressing Esc
enough times.

167 / 172

vim command mode: useful commands
From command mode, the following commands are very
useful (confirm with Enter):

/something searches for "something".

?something does the same, but backwards.

/ or n goes to the next match.

? or N goes to the previous match.

All of the above works in less as well.

:NUMBER goes to line number NUMBER - very useful when
debugging.

E.g. :50 goes to 50th line in the file.

168 / 172

vim modes: insert mode
After navigating around the file using arrow keys, PgUp/PgDn or
other commands, you eventually want to edit the text.

Press i to switch to insert mode:

-- INSERT -- 1,1 Top

Here, you can use your keyboard as usual to edit/input text.

As a reminder, to get back to command mode you should
press Esc.

169 / 172

Exiting vim, eventually
When you're done with editing, go back to command mode,
and use one of the commands to exit:

:q will quit Vim if there are no unsaved changes to the file.
It will stop you if there are any.

:w writes the changes to file.

:w filename writes the changes to another file, filename.
It is essentially the "Save As" command.

:wq combines the two: saves current file and exits.

:q! quits forcefully, discarding unsaved changes.

170 / 172

vim: minimal survival guide
The absolute minimum knowledge required to use vim:

Use arrow keys to move around in any mode.

Press i to start entering ("inserting") text.

Press Esc before you do anything else.

:wq to write your changes and quit, or

:q! to discard your changes and quit.

Further vim help and training is available with vimtutor shell
command.

171 / 172

Try vim
Exercise:

1. Open the file ten with vim:

user@remote:~/scits-training/numbers/ $ vim ten

2. Add numbers from 6 to 10 to the end, on separate lines

3. Save and exit vim (hint: write and quit)

4. Verify what's in the file using cat

172 / 172

