Linux for Owners

https://goo.gl/auQmRB

v.1.1 (2019-01-29)

1/105

Agenda

© 0010 Ul WN -

Owning a Linux system

. Course expectations

. Linux landscape

. Accessing root

. Linux filesystem structure
. Mounting filesystems

Working with the package manager

. Installing software from other sources
. User management

Examining system state

. Working with services
. Security considerations
. Troubleshooting tips

2 /105

Owning a Linux system

What do we mean by that?

3/105

Owning a Linux system

What do we mean by that?

Administrative privileges vs a normal account only.

3/105

Owning a Linux system

What do we mean by that?

Administrative privileges vs a normal account only.
Symptoms:

« access to the root user, or

e access to sudo (or su) commands

« having installed the system yourself (optional)
« physical access to the machine (optional)

3/105

Owning a Linux system

What do we mean by that?

Administrative privileges vs a normal account only.
Symptoms:

« access to the root user, or

e access to sudo (or su) commands

« having installed the system yourself (optional)
« physical access to the machine (optional)

Having admin access usually means you are responsible for
maintenance and configuration of the system.

For that, you need a deeper knowledge of how it works.

3/105

Typical ownership scenarios

4 /105

Typical ownership scenarios

e Linux installed as main OS on a desktop or laptop machine

o Scenarios: work requirement, curiosity, alternative OS
o Typically means a graphical environment

4 /105

Typical ownership scenarios

e Linux installed as main OS on a desktop or laptop machine

o Scenarios: work requirement, curiosity, alternative OS
o Typically means a graphical environment

e Linux used as a virtual machine guest

o Scenarios: experimentation, sandbox, development
o Safe way to try OSes and configurations

4 /105

Typical ownership scenarios

e Linux installed as main OS on a desktop or laptop machine

o Scenarios: work requirement, curiosity, alternative OS
o Typically means a graphical environment

e Linux used as a virtual machine guest

o Scenarios: experimentation, sandbox, development
o Safe way to try OSes and configurations

e Linux used as a server

o Can be bare-metal or virtualized
o Typically means a CLI environment (over SSH)

4 /105

Typical ownership scenarios

Linux installed as main OS on a desktop or laptop machine

o Scenarios: work requirement, curiosity, alternative OS
o Typically means a graphical environment

Linux used as a virtual machine guest

o Scenarios: experimentation, sandbox, development
o Safe way to try OSes and configurations

Linux used as a server

o Can be bare-metal or virtualized
o Typically means a CLI environment (over SSH)

Linux appliance / IoT

Android (which you usually don't own!)
4 /105

Typical responsibilities

5/105

Typical responsibilities

Installing new software as needed

Configuring software and access to hardware

Updating software & OS

Securing the system and installed software

Solving problems as they appear

5/105

Course expectations

This is a crash-course limited to one day.

You are expected to know the basics of working with
Linux. At a minimum, working with command line and
editing files from it.

You were asked to prepare a VM with Linux, that way you
can safely try admin commands and reboot the OS without
affecting your main system.

Some commands can differ per Linux "flavour”. The
course sticks to Ubuntu / Debian, and may need to be
adapted to other distributions.

The course is intended to be an introduction; to dig deeper
into topics you'll need to do your own research.

6/105

Linux landscape: What's a distribution?

"Linux" is the name of the OS kernel, and needs a lot of other
software to be a functional operating system.

One can, in principle, assemble this collection of software
themselves: such an approach is called Linux From Scratch.

7 /105

Linux landscape: What's a distribution?

"Linux" is the name of the OS kernel, and needs a lot of other
software to be a functional operating system.

One can, in principle, assemble this collection of software
themselves: such an approach is called Linux From Scratch.

It's long, requires in-depth knowledge of the system and most
importantly leaves keeping the system up to date to the user.

A better approach is to use a distribution, which offers:

« A curated collection of software tested to work together.
A package manager to automate software install tasks.
Pre-compiled software for faster installation.

Security updates and fixes for critical bugs.

Varying balance between stability and faster updates.
Optional: paid support.

7 /105

Linux landscape: Popular distributions

There are many families of distributions, sharing package
managers and maybe parts of the package collection.

8 /105

Linux landscape: Popular distributions

There are many families of distributions, sharing package
managers and maybe parts of the package collection.

e Debian (package manager: apt / .deb packages)
o Ubuntu
» Kubuntu, Lubuntuy, ...
= Linux Mint
o Kali, Tails, Devuan

8 /105

Linux landscape: Popular distributions

There are many families of distributions, sharing package
managers and maybe parts of the package collection.

e Debian (package manager: apt / .deb packages)
o Ubuntu
» Kubuntu, Lubuntuy, ...
= Linux Mint
o Kali, Tails, Devuan
« RHEL (package manager: yum / .rpm packages)
o Fedora
o CentOS, Scientific Linux
o SUSE, OpenSUSE

8 /105

Linux landscape: Popular distributions

There are many families of distributions, sharing package
managers and maybe parts of the package collection.

e Debian (package manager: apt / .deb packages)
o Ubuntu
» Kubuntu, Lubuntuy, ...
» Linux Mint
o Kali, Tails, Devuan
RHEL (package manager: yum / .rpm packages)
o Fedora
o CentOS, Scientific Linux
o SUSE, OpenSUSE
Arch Linux (package manager: pacman)
o Manjaro Linux
Gentoo (package manager: Portage / emerge)
o Chrome OS
Alpine Linux

8 /105

Linux [andscape: Rolling / Static / LTS

Various Linux distributions take different approaches to
software updates.

Programs update at their own pace, called "upstream".

9/105

Linux [andscape: Rolling / Static / LTS

Various Linux distributions take different approaches to
software updates.

Programs update at their own pace, called "upstream".

Rolling distributions try to keep up with upstream version
updates, with minimal changes to keep it compatible with the
rest of the software stack.

9/105

Linux [andscape: Rolling / Static / LTS

Various Linux distributions take different approaches to
software updates.

Programs update at their own pace, called "upstream".

Rolling distributions try to keep up with upstream version
updates, with minimal changes to keep it compatible with the
rest of the software stack.

Static distributions lock down software versions at the time
of release, in order to provide more testing and stability.

9/105

Linux [andscape: Rolling / Static / LTS

Various Linux distributions take different approaches to
software updates.

Programs update at their own pace, called "upstream".

Rolling distributions try to keep up with upstream version
updates, with minimal changes to keep it compatible with the
rest of the software stack.

Static distributions lock down software versions at the time
of release, in order to provide more testing and stability.

However, critical bugfixes and security patches have to be
ported back "downstream" to those "frozen" versions.

Some static distributions have Long Term Support releases
that guarantee longer availability of such patches.

9/105

Assuming superpowers

How do administrative powers work in Linux?

Compared to regular users, the user with ID 0, or root, is
treated as superuser: it has the ability to bypass all usual
access restrictions.

10/105

Assuming superpowers

How do administrative powers work in Linux?

Compared to regular users, the user with ID 0, or root, is
treated as superuser: it has the ability to bypass all usual
access restrictions.

In some Linux distributions a password for root is set at
install time and can be used to log in directly.

However, most of the time users with administrative
privileges will have access to use sudo command.

Mnemonic:

sudo stands for "superuser do", because it executes some
other command as superuser instead of current user.

10/105

Assuming superpowers: sudo

MAKE ME A SANDWICH,

|

SUDO MAKE ME
A SANDWICH.

\

WHAT? MAKE
IT YOURSELF,

/

OKAY.
/

& A

Image credit: XKCD #149

11/105

https://xkcd.com/149/

Assuming superpowers: sudo

sudo [command] executes the command as root instead of the
current user:

owner@Linux:~$ whoami
owner

owner@linux:~$ sudo whoami
[sudo] password for owner:

12 /105

Assuming superpowers: sudo

sudo [command] executes the command as root instead of the
current user:

owner@Linux:~$ whoami
owner

owner@linux:~$ sudo whoami
[sudo] password for owner:

Normally, sudo asks for authentication: it requires you to
supply your own password (not the root password!).

owner@Linux:~S$S sudo whoami
[sudo] password for owner: <type in owner's password>

root
owner@Llinux:~$

12 /105

Assuming superpowers: sudo

sudo remembers that you have authenticated, and subsequent
commands do not require password for 15 minutes:

owner@linux:~$ sudo whoami
root

owner@Llinux:~$

13 /105

Assuming superpowers: sudo

sudo remembers that you have authenticated, and subsequent
commands do not require password for 15 minutes:

owner@linux:~$ sudo whoami

root
owner@Llinux:~$

If you need to do a lot of stuff as root, you can use sudo -ito
start a login shell as root:

owner@Linux:~$ sudo -1i
whoami

root

Mnemonic:
-1 1s short for interactive

Reference: man sudo_root 13/105

To root or not to root

Forgetting sudo before a command that requires it can be
jarring. Therefore, there is great temptation to use a root shell
when mostly admin tasks are involved.

14 /105

To root or not to root

Forgetting sudo before a command that requires it can be
jarring. Therefore, there is great temptation to use a root shell
when mostly admin tasks are involved.

Problem is, there are no "handrails" on what the root user can
do. It's far too easy to shoot oneself in the foot.

An error in a program run under root can break critical parts
of the system, which won't happen under a regular user.

14 /105

To root or not to root

Forgetting sudo before a command that requires it can be
jarring. Therefore, there is great temptation to use a root shell
when mostly admin tasks are involved.

Problem is, there are no "handrails" on what the root user can
do. It's far too easy to shoot oneself in the foot.

An error in a program run under root can break critical parts
of the system, which won't happen under a regular user.

From a security perspective, running complex, or untrusted,
programs under root opens you up for malicious actions as
well.

14 /105

To root or not to root: a horror story

Running this command as a root is a classic mean prank:

rm -rf /

rm: it 1s dangerous to operate recursively on '/'
rm: use --no-preserve-root to override this failsafe

Fortunately, as written it doesn't work, there's a failsafe.

15/105

To root or not to root: a horror story

Running this command as a root is a classic mean prank:

rm -rf /

rm: it 1s dangerous to operate recursively on '/'
rm: use --no-preserve-root to override this failsafe

Fortunately, as written it doesn't work, there's a failsafe.

However, consider this line:

(DO NOT RUN THIS)

rm -rf SFOLDER/*

This is supposed to delete everything in folder $FOLDER.

But in case that variable is unset, it will happily destroy
everything on the system — if run as root.

15/105

To root or not to root

In addition, if files are created while running as root it usually
leads to them being inaccessible by normal users.

This can lead to errors when running the same commands
later as a normal user.

16 /105

To root or not to root

In addition, if files are created while running as root it usually
leads to them being inaccessible by normal users.

This can lead to errors when running the same commands
later as a normal user.

Most workflows are a mixture of commands that require
superuser and those that don't.

It's good practice to be aware of it and run only those parts
that need it with sudo.

16 /105

To root or not to root

In addition, if files are created while running as root it usually
leads to them being inaccessible by normal users.

This can lead to errors when running the same commands
later as a normal user.

Most workflows are a mixture of commands that require
superuser and those that don't.

It's good practice to be aware of it and run only those parts
that need it with sudo.

It's not a hard rule. Running a set of commands as root has its
place, but one needs to be careful and mindful of the above
nuances.

16 /105

root and SSH

By default, even if you set a password for the root user, you
won't be able to connect via SSH with this password.

This is done to discourage brute-forcing the root password.

17 /105

root and SSH

By default, even if you set a password for the root user, you
won't be able to connect via SSH with this password.

This is done to discourage brute-forcing the root password.

This encourages people to connect as their user and elevate
with sudo if necessary. This creates more meaningful logs.

Also, if your SSH key is compromised but your user password
is not, the attacker won't be able to elevate to root even if they
can connect.

17 /105

root and SSH

By default, even if you set a password for the root user, you
won't be able to connect via SSH with this password.

This is done to discourage brute-forcing the root password.

This encourages people to connect as their user and elevate
with sudo if necessary. This creates more meaningful logs.

Also, if your SSH key is compromised but your user password
is not, the attacker won't be able to elevate to root even if they
can connect.

It's still possible to connect directly as root by weakening the
security (bad idea) or adding an SSH key to the root account.
However, previous warnings apply.

17 /105

How is sudo configured?

What enables certain users to use sudo?

By default, members of a specific group (e.g. sudo, admin, wheel)
are allowed all root privileges after verifying their password.

18 /105

How is sudo configured?

What enables certain users to use sudo?

By default, members of a specific group (e.g. sudo, admin, wheel)
are allowed all root privileges after verifying their password.

There's a /etc/sudoers file describing the system policy.

It can be fine-tuned to allow some users access only to specific
commands, or dropping the password requirement.

(Advice:

When editing sudoers file, always use the visudo script. It
sanity-checks changes so that you don't lock yourself out.

References: man sudoers, Understanding the sudoers file

18 /105

https://medium.com/@viraj.khatavkar/understanding-the-sudoers-file-8d71961b28ac

Exercise: inspect the sudoers file

(Exercise:

1. Try examining the contents of /etc/sudoers file:

owner@linux:~$ less /etc/sudoers

2. Explain the problem

3. Fix the problem (using sudo)

19/105

Bonus: violating the sudoers policy

robm@homebox ~§ Sudo su
Possiord:

robm is not in the sudoers file,
This incident will be reported.
room@homebox ~§

|

HEY — WHO DOES
SUDO REPORT THESE
INCIDENTS™ 707

YOU KNOW, TVE
NEVER CHECKED.

\ Y

I
;
:

1]
"
[

|
1l

|

i
i

i)
!

g
1'.1.
N
by
Y
\
o
5\

Image credit: XKCD #838

20 /105

https://xkcd.com/838/

Linux filesystem map: what goes where?

Before we proceed, it's important to understand common
filesystem locations in Linux.

It differs a little from distribution to distribution, but
generally systems adhere to the Filesystem Hierarcy
Standard, or FHS (3.0 currently).

Not every entry in the standard will be explained, but "points
of interest” will be shown.

References: Wikipedia entry on FHS, FHS 3.0 specification

21 /105

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
http://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.html

Linux filesystem: a common tree

Under UNIX conventions, there's only a single filesystem tree
visible in the system.

There can be multiple disks, or multiple partitions on those
disks, each with its own filesystem trees, but to be usable they
are inserted in the common file tree as subtrees:

Filesystem 1 /
|
v v
folder Filesystem 2
J |) another_folder
subfolder file v
! another_file

Linux filesystem: a common tree

Filesystem 1 /
|
v v
folder Filesystem 2
I | 1 another_folder
subfolder file v
) another_file

This process is called mounting. You can examine currently
mounted filesystems with the mount command:

owner@Linux:~S$S mount
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)

proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)

[...]

Linux filesystem: /home sweet home

As a user, you're probably familiar with /home.

Home directories for each user are usually stored there:

owner@linux:~$ echo $HOME
/home/owner
owner@linux:~$ 1s -1 /home/

total 6
drwxr-xr-x 4 owner owner 4096 Jan 14 00:03 owner

drwxr-xr-x 2 user user 4096 Jan 15 18:31 user

The root user is an exception:

owner@Linux:~S$ sudo -i
echo SHOME

/root

This is done to help with troubleshooting, if /home is a separate
filesystem and something goes wrong with it.

24 /105

Linux filesystem: configuration, et cetera

We have already saw /etc mentioned when we looked at
sudoers policy.

In fact, by convention all system-wide configuration files are
stored there, often grouped into folders by topic/program.

Most files are only writable by root, and some highly-sensitive
ones, like /etc/sudoers, are not readable by anyone else.

(Note:

User-specific configuration (and persistent state) is usually
stored in the user's home folder as hidden files/folders, e.g.
/home /owner/.bashrc

owner@linux:~$ 1ls -a ~

.bash_history .bash_logout .bashrc .cache .gnupg .local .ssh ...

25 /105

Linux filesystem: where software lives

Executable ("binary") files for software installed system-wide
is read-only for regular users and is organized in (up to) 3
tiers of hierarchy of sbin/bin folders:

e /sbin, /bin - essential system software

26 /105

Linux filesystem: where software lives

Executable ("binary") files for software installed system-wide
is read-only for regular users and is organized in (up to) 3
tiers of hierarchy of sbin/bin folders:

e /sbin, /bin - essential system software
e /usr/sbin, /usr/bin - more software that's part of the OS

26 /105

Linux filesystem: where software lives

Executable ("binary") files for software installed system-wide
is read-only for regular users and is organized in (up to) 3
tiers of hierarchy of sbin/bin folders:

e /sbin, /bin - essential system software
e /usr/sbin, /usr/bin - more software that's part of the OS

e /usr/local/sbin, /usr/local/bin - additional software

26 /105

Linux filesystem: where software lives

Executable ("binary") files for software installed system-wide
is read-only for regular users and is organized in (up to) 3
tiers of hierarchy of sbin/bin folders:

e /sbin, /bin - essential system software
e /usr/sbin, /usr/bin - more software that's part of the OS
e /usr/local/sbin, /usr/local/bin - additional software

These locations can have 1ib and include folders for library
and header files, and share folders for program data.

26 /105

Linux filesystem: where software lives

Executable ("binary") files for software installed system-wide
is read-only for regular users and is organized in (up to) 3
tiers of hierarchy of sbin/bin folders:

e /sbin, /bin - essential system software
e /usr/sbin, /usr/bin - more software that's part of the OS
e /usr/local/sbin, /usr/local/bin - additional software

These locations can have 1ib and include folders for library
and header files, and share folders for program data.

Finally, /opt provides a location for installing extra software
without interfering with /usr.

26 /105

Linux filesystem: where software lives

Executable ("binary") files for software installed system-wide
is read-only for regular users and is organized in (up to) 3
tiers of hierarchy of sbin/bin folders:

e /sbin, /bin - essential system software
e /usr/sbin, /usr/bin - more software that's part of the OS
e /usr/local/sbin, /usr/local/bin - additional software

These locations can have 1ib and include folders for library
and header files, and share folders for program data.

Finally, /opt provides a location for installing extra software
without interfering with /usr.

In practice, the difference between these locations is not very
well defined. Some distributions don't differentiate at all.

26 /105

Linux filesystem: not-quite-files

Several locations on the filesystem contain virtual "files" that
can be read and/or written to, but represent something else.

27 /105

Linux filesystem: not-quite-files

Several locations on the filesystem contain virtual "files" that
can be read and/or written to, but represent something else.

» /dev contains device files that serve as interfaces to
hardware that the kernel sees and has drivers for;

27 /105

Linux filesystem: not-quite-files

Several locations on the filesystem contain virtual "files" that
can be read and/or written to, but represent something else.

» /dev contains device files that serve as interfaces to
hardware that the kernel sees and has drivers for;

o /proc contains information and interfaces to control
running processes and some kernel systems;

27 /105

Linux filesystem: not-quite-files

Several locations on the filesystem contain virtual "files" that
can be read and/or written to, but represent something else.

» /dev contains device files that serve as interfaces to
hardware that the kernel sees and has drivers for;

o /proc contains information and interfaces to control
running processes and some kernel systems;

e /sys contains kernel and system information and
interfaces to control it. It's a newer method than /proc.

Those locations are, again, usually read-only (or not
accessible) to regular users.

27 /105

Linux filesystem: variable and temporary

Besides fixed program data, the filesystem has locations for
variable data, like temporary files and persistent state.

28 /105

Linux filesystem: variable and temporary

Besides fixed program data, the filesystem has locations for
variable data, like temporary files and persistent state.

« /var represents variable data. A couple notable folders:
o [var/log for system logs
o [var/1ib for data modified by programs, e.g. databases

28 /105

Linux filesystem: variable and temporary

Besides fixed program data, the filesystem has locations for
variable data, like temporary files and persistent state.

« /var represents variable data. A couple notable folders:
o [var/log for system logs
o [var/1ib for data modified by programs, e.g. databases

« /run contains state information since startup.
« /tmp is for temporary data, and is user-writable.

Both /run and /tmp locations are emptied on boot, and in fact
usually exist only in memory.

28 /105

Linux filesystem: variable and temporary

Besides fixed program data, the filesystem has locations for
variable data, like temporary files and persistent state.

« /var represents variable data. A couple notable folders:
o [var/log for system logs
o [var/1ib for data modified by programs, e.g. databases

« /run contains state information since startup.
« /tmp is for temporary data, and is user-writable.

Both /run and /tmp locations are emptied on boot, and in fact
usually exist only in memory.

e /var/tmp is also for temporary data, but it survives reboot.

28 /105

Linux filesystem: other storage

When extra storage is connected to the system, there are
conventional places to add it to the filesystem.

29 /105

Linux filesystem: other storage

When extra storage is connected to the system, there are
conventional places to add it to the filesystem.

e /media is populated with filesystems from removable
storage added to the system: USB drives, CD disks, etc.

Often, such devices are added to /media automatically.

29 /105

Linux filesystem: other storage

When extra storage is connected to the system, there are
conventional places to add it to the filesystem.

e /media is populated with filesystems from removable
storage added to the system: USB drives, CD disks, etc.

Often, such devices are added to /media automatically.

e /mnt is the traditional place to mount additional
filesystems temporarily.

29 /105

Linux filesystem: where everything starts

Last but not least, /boot contains essential files to initialize
Linux when the computer starts up.

Typical contents:

e /boot/grub/ contains bootloader components

e /boot/vmlinuz* files are compressed Linux kernels

e /boot/initrd* files are initial filesystems that are used
until "real" root becomes available

Reference: A broad overview of how modern Linux systems
boot

30/105

https://utcc.utoronto.ca/~cks/space/blog/linux/LinuxBootOverview

Linux filesystem: where everything starts

Last but not least, /boot contains essential files to initialize
Linux when the computer starts up.

Typical contents:

e /boot/grub/ contains bootloader components

e /boot/vmlinuz* files are compressed Linux kernels

e /boot/initrd* files are initial filesystems that are used
until "real" root becomes available

Reference: A broad overview of how modern Linux systems
boot

(Note:

On some OS configurations, /boot is a small separate
filesystem. Since it usually contains several versions of the
kernel as a backup, in worst case it can run out of space.

In that case, you'll need to clean up older kernels before

30/105

https://utcc.utoronto.ca/~cks/space/blog/linux/LinuxBootOverview

Linux filesystem: parts, assemble!

As mentioned, the mount command can be used to list
currently-mounted filesystems.

31/105

Linux filesystem: parts, assemble!

As mentioned, the mount command can be used to list
currently-mounted filesystems.

To mount a filesystem, mount [WHAT] [WHERE] format is used.

Here, [WHAT] identifies where the filesystem can be accessed
(e.g. a physical drive partition), and [WHERE] identifies the
directory where its contents should be mapped.

31/105

Linux filesystem: parts, assemble!

As mentioned, the mount command can be used to list
currently-mounted filesystems.

To mount a filesystem, mount [WHAT] [WHERE] format is used.

Here, [WHAT] identifies where the filesystem can be accessed
(e.g. a physical drive partition), and [WHERE] identifies the
directory where its contents should be mapped.

To unmount a filesystem, umount [WHAT] (Or umount [WHERE])
command can be used. Typically, only root can mount or
unmount.

31/105

Linux filesystem: parts, assemble!

As mentioned, the mount command can be used to list
currently-mounted filesystems.

To mount a filesystem, mount [WHAT] [WHERE] format is used.

Here, [WHAT] identifies where the filesystem can be accessed
(e.g. a physical drive partition), and [WHERE] identifies the
directory where its contents should be mapped.

To unmount a filesystem, umount [WHAT] (Or umount [WHERE])
command can be used. Typically, only root can mount or
unmount.

For permanent mount rules, e.g. what gets mounted on boot,
see the /etc/fstab file.

References: man mount, man umount, man fstab

31/105

Exercise: adding a filesystem

Let's see mount and fstab in action. We'll create a file that holds
a small filesystem, mount it, and then set it up to mount
automatically at boot.

Let's create a 100MB file and an ext4 filesystem on it:

owner@linux:~$ truncate -s 100m loop_file

owner@linux:~$ mkfs.ext4 loop_file

Then, let's create a mount point (where the filesystem will be
mapped):

owner@linux:~$ sudo mkdir /mnt/tiny
owner@linux:~$ ls -la /mnt/tiny/

total 8
drwxr-xr-x 2 root root 4096 Jan 16 09:50 .
drwxr-xr-x 3 root root 4096 Jan 16 09:50 .

32 /105

Exercise: mounting a filesystem

Let's mount our tiny filesystem.

owner@linux:~$ sudo mount /home/owner/loop file /mnt/tiny

owner@linux:~$ mount | grep tiny
/home/owner/loop_file on /mnt/tiny type extd4 (rw,relatime,data=ordered)

As a regular user, we can't write to it:

owner@linux:~$ touch /mnt/tiny/test
touch: cannot touch '/mnt/tiny/test': Permission denied

Let's make it writable:

owner@linux:~$ sudo chmod a+w /mnt/tiny/
owner@linux:~$ touch /mnt/tiny/test
owner@linux:~$ 1s -la /mnt/tiny/

total 17

drwxrwxrwx 3 root root 1024 Jan 16 10:56 ./
drwxr-xr-x 3 root root 4096 Jan 16 09:50 ../
root root 12288 Jan 16 09:49 lost+found/
owner owner 0 Jan 16 10:56 test

Exercise: unmounting a filesystem

owner@linux:~$ ls -la /mnt/tiny/
total 17
drwxrwxrwx 3 root root 1024 Jan 16 10:56 ./

drwxr-xr-x 3 root root 4096 Jan 16 09:50 ../
root root 12288 Jan 16 09:49 lost+found/
owner owner 0 Jan 16 10:56 test

Let's unmount the filesystem and examine the situation again:

owner@linux:~$ sudo umount /mnt/tiny/
owner@linux:~$ 1ls -la /mnt/tiny/
total 8

drwxr-xr-x 2 root root 4096 Jan 16 09:50 .
drwxr-xr-x 3 root root 4096 Jan 16 09:50 ..

Our file is not there.

Note that the mount point is not writable by all, as our chmod

command affected the tiny filesystem's root folder and not the
mount point.

Exercise: add to fstab

Let's add our mount to fstab.

(Advice:

You can edit configuration files with sudo nano <FILENAME>
(or other editor), but it's better to use sudoedit <FILENAME>.

See sudoedit: why use it over sudo vi? for an explanation.

. /

owner@linux:~$ sudoedit /etc/fstab

It opens a file with already one or more records present. We
need to add one.

35/105

https://superuser.com/questions/785187/sudoedit-why-use-it-over-sudo-vi

Exercise; fstab format

An fstab record contains whitespace-separated fields:

[file system] - where to find the filesystem

[mount point] - where to map it in the system

[type] - what type of filesystem it is (-t flag)

[options] - various settings you can tweak (-o flag)
[dump] - 0/1, setting for a very old backup solution

In practice, always 0

[pass] - order to check the filesystem for errors on boot

Let's add our filesystem, at the end of the file:

/home/owner/loop_file /mnt/tiny ext4 defaults 0 2

Take care not to modify other entries. Save and exit.

36 /105

Exercise: filesystemin fstab

Now that our example is in fstab, we can mount it easier:

owner@linux:~$ sudo mount /mnt/tiny/

owner@linux:~$ ls /mnt/tiny
lost+found test

You can mount all filesystems in fstab at once with mount -a.

Further, our example should now be accessible after a reboot.
To prevent automatic mounting at boot time, use noauto
option.

(Note:

To be able to mount a filesystem, corresponding
drivers/utilities need to be installed. If you fail to mount
something, like a network drive, check installed packages.

37 /105

Remark: mounting network filesystems

Mounting filesystems over the network works similarly.

Note that you usually need to install protocol specific
packages, e.g.

e cifs-utils for Windows / SMB shares (\\server\folder\)
e nfs-common for UNIX-style NFS shares (server:/path)
« sshfs for mounting remote folders over SSH

38 /105

Working with the package manager

To simplify software installation, updates and removal,
distributions provide a package manager and a collection of
"official" packages.

Command examples for apt, Debian/Ubuntu package
manager, will be shown, but principles apply to other
managers.

39 /105

Packages: software sources

To install software, apt needs up-to-date information about
packages that are available.

[etc/apt/sources.list contains the information on
repositories to get information from for system packages.

40/ 105

Packages: software sources

To install software, apt needs up-to-date information about
packages that are available.

[etc/apt/sources.list contains the information on
repositories to get information from for system packages.

A command needs to be run to update a local catalog of
package information:

owner@linux:~ $ sudo apt update

[...]

Get:8 http://ch.archive.ubuntu.com/ubuntu bionic-security/universe amd64 Packag
Fetched 1798 kB in 1s (1768 kB/s)

Reading package lists... Done

Building dependency tree

Reading state information... Done

12 packages can be upgraded. Run 'apt list --upgradable' to see them.

40 /105

Packages: upgrading installed packages

Use apt upgrade command to install updates apt is aware of.

41/105

Packages: upgrading installed packages

Use apt upgrade command to install updates apt is aware of.

owner@linux:~$ sudo apt upgrade

Reading package lists... Done

Building dependency tree

Reading state information... Done
Calculating upgrade... Done

The following packages will be upgraded:

gjs gnome-software gnome-software-common gnome-software-plugin-snap gvfs
gvfs-backends gvfs-bin gvfs-common gvfs-daemons gvfs-fuse gvfs-1libs 1libgjsOg
libsmbclient libwbclient® linux-firmware samba-1libs ubuntu-software

17 upgraded, 0 newly installed, © to remove and O not upgraded.

Need to get 71.6 MB/74.6 MB of archives.

After this operation, 3'258 kB of additional disk space will be used.

Do you want to continue? [Y/n]

After confirmation, apt will download and apply updates.

Packages: upgrading installed packages

Use apt upgrade command to install updates apt is aware of.

owner@linux:~$ sudo apt upgrade

Reading package lists... Done

Building dependency tree

Reading state information... Done
Calculating upgrade... Done

The following packages will be upgraded:

gjs gnome-software gnome-software-common gnome-software-plugin-snap gvfs
gvfs-backends gvfs-bin gvfs-common gvfs-daemons gvfs-fuse gvfs-1libs 1libgjsOg
libsmbclient libwbclient® linux-firmware samba-1libs ubuntu-software

17 upgraded, 0 newly installed, © to remove and O not upgraded.

Need to get 71.6 MB/74.6 MB of archives.

After this operation, 3'258 kB of additional disk space will be used.

Do you want to continue? [Y/n]

After confirmation, apt will download and apply updates.

(Note:

Sometimes, an upgrade needs to remove some (replaced)
packages. In that case, apt dist-upgrade is used.

41 /105

Packages: to upgrade or not to upgrade?

Static distributions like Ubuntu only update packages when
serious bugfixes or security fixes are needed, with little to no

functionality changes.

As such, it's usually safe to upgrade OS-provided packages.

42 /105

Packages: to upgrade or not to upgrade?

Static distributions like Ubuntu only update packages when
serious bugfixes or security fixes are needed, with little to no
functionality changes.

As such, it's usually safe to upgrade OS-provided packages.

If you're using a rolling distribution, or a third-party
repository, they can introduce breaking changes. Be prepared
and read available changelogs to determine when to upgrade.

42 /105

Packages: to upgrade or not to upgrade?

Static distributions like Ubuntu only update packages when
serious bugfixes or security fixes are needed, with little to no

functionality changes.
As such, it's usually safe to upgrade OS-provided packages.

If you're using a rolling distribution, or a third-party
repository, they can introduce breaking changes. Be prepared
and read available changelogs to determine when to upgrade.

If you need to stop a particular package from upgrading, you
can put it on hold:

owner@linux:~$ sudo apt-mark hold bash
bash set on hold.

owner@linux:~$ sudo apt-mark unhold bash
Canceled hold on bash.

42 /105

Packages: when to upgrade?

For most updates, upgrades will not disrupt normal workflow
and can be applied at any time.

Note that upgrading running services (e.g. a web server)
requires them to restart, briefly becoming unavailable. You
may need to plan your maintenance in advance.

43 /105

Packages: when to upgrade?

For most updates, upgrades will not disrupt normal workflow
and can be applied at any time.

Note that upgrading running services (e.g. a web server)
requires them to restart, briefly becoming unavailable. You
may need to plan your maintenance in advance.

Some upgrades (mostly kernel updates) can't be applied
without a reboot. The system will nag you about it, but you
won't be forced to reboot.

43 /105

Packages: when to upgrade?

For most updates, upgrades will not disrupt normal workflow
and can be applied at any time.

Note that upgrading running services (e.g. a web server)
requires them to restart, briefly becoming unavailable. You
may need to plan your maintenance in advance.

Some upgrades (mostly kernel updates) can't be applied
without a reboot. The system will nag you about it, but you
won't be forced to reboot.

General advice for any software updates: be prepared to
spend some time dealing with unexpected problems.

43 /105

Packages: Finding system packages

If you're missing some software and it's available in OS
repositories, it's very easy to install.

The shell can even suggest the package you're missing:

owner@Linux:~S$S fortune

Command 'fortune' not found, but can be installed with:

sudo apt install fortune-mod

Otherwise, you can search known packages by package
name or description with apt search:

owner@linux:~$ apt search cow
[..long list..]

owner@linux:~$ apt search --names-only cow
[..shorter list..]

44 [105

Packages: Installing system packages

Once you know the name of the package(s), you can install
them with apt install:

owner@linux:~$ sudo apt install fortune-mod cowsay

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:
fortunes-min librecode0®

Suggested packages:

filters cowsay-off fortunes
The following NEW packages will be installed:
cowsay fortune-mod fortunes-min librecode®
O upgraded, 4 newly installed, 0 to remove and 0 not upgraded.
Need to get 638 kB of archives.
After this operation, 2'220 kB of additional disk space will be used.
Do you want to continue? [Y/n]

After confirmation, apt will download and install them.

Bonus: just what did we just install?!

Let's test the software we just installed.

owner@linux:~$ fortune | cowsay

/ Truth is the most valuable thing we \
have -- so let us economize it.

|
I
\ -- Mark Twain

(Exercise:

This could look better: we're missing some pretty colors

Find the package that provides the lolcat application,
install it and pipe the output through it.

Packages: dependency resolution

Let's look at that apt install output again.

The following additional packages will be installed:
fortunes-min librecode®

Suggested packages:
filters cowsay-off fortunes

The following NEW packages will be installed:
cowsay fortune-mod fortunes-min librecode0®
O® upgraded, 4 newly installed, 0 to remove and 0 not upgraded.

Often, packages require other packages (e.g. libraries, data
files) to be installed to function. The package manager's job is
to find and install everything that's needed.

(Note:

Rarely, a package is incompatible with already installed
ones. You will then be offered to remove packages to resolve
this. In that case, proceed with caution.

(.

47 [105

Packages: getting rid of them

If you no longer need a package, you can use apt remove:

owner@linux:~$ sudo apt remove fortune-mod

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following packages were automatically installed and are no longer required
fortunes-min librecode®

Use 'sudo apt autoremove' to remove them.
The following packages will be REMOVED:
fortune-mod
O® upgraded, 0 newly installed, 1 to remove and 12 not upgraded.
After this operation, 110 kB disk space will be freed.
Do you want to continue? [Y/n]

After confirmation, the program will be removed, but its
configuration files will remain in case you reinstall.

Packages: getting rid of them

If you no longer need a package, you can use apt remove:

owner@linux:~$ sudo apt remove fortune-mod

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following packages were automatically installed and are no longer required
fortunes-min librecode®

Use 'sudo apt autoremove' to remove them.
The following packages will be REMOVED:
fortune-mod
O® upgraded, 0 newly installed, 1 to remove and 12 not upgraded.
After this operation, 110 kB disk space will be freed.
Do you want to continue? [Y/n]

After confirmation, the program will be removed, but its
configuration files will remain in case you reinstall.

If you want to completely clean up the package, use apt purge:

owner@linux:~$ sudo apt purge fortune-mod

Packages: orphaned dependencies

Take note of these lines in apt remove output:

The following packages were automatically installed and are no longer required

fortunes-min librecode®

apt is informing you that fortunes-min and librecode® were
installed as dependencies, but nothing requires them
anymore.

Therefore, it's highly likely that they can be removed without
affecting anything. However, apt doesn't do that automatically.

To allow apt to do that, use apt autoremove:

owner@linux:~$ sudo apt autoremove

[...]

49 /105

Packages: getting information

If you want to know more about a package, you can query for
information.

50/105

Packages: getting information

If you want to know more about a package, you can query for
information.

apt show displays metadata about a package, and apt policy
shows installed and available versions.

50/105

Packages: getting information

If you want to know more about a package, you can query for
information.

apt show displays metadata about a package, and apt policy
shows installed and available versions.

dpkg -L <package> shows all files a certain installed package
provides. Conversely, dpkg -S <file> shows what package a
file comes from.

50/105

Packages: getting information

If you want to know more about a package, you can query for
information.

apt show displays metadata about a package, and apt policy
shows installed and available versions.

dpkg -L <package> shows all files a certain installed package
provides. Conversely, dpkg -S <file> shows what package a
file comes from.

(Exercise:

Find out what package whoamti is from, what other programs
are provided by this package and its dependencies.

(.

50/105

Automatic upgrades

In Debian, automatic upgrades are provided by unattended-
upgrades package.

Its behavior defaults to automatically installing security
updates.

It can be tuned by editing its configuration file:

owner@linux:~$ sudoedit /etc/apt/apt.conf.d/50unattended-upgrades

51/105

Other sources for software

What if you're not satisfied with the official OS packages, what
are other ways you can install software?

52 /105

Other sources for software

What if you're not satisfied with the official OS packages, what
are other ways you can install software?

o Compatible pre-made packages (including closed source)
« Third-party repositories

« Building from source

52 /105

Compatible packages

apt is built upon dpkg, which expects .deb (or "Debian")
packages.

If software provides .deb files, it's likely you can install them.

53/105

Compatible packages

apt is built upon dpkg, which expects .deb (or "Debian")
packages.

If software provides .deb files, it's likely you can install them.
e The architecture must match (1386 / amd64 /arm/ ...)

o It may expect dependencies that are too old / too new / not
available if it was built for another distribution or release

53/105

Compatible packages

apt is built upon dpkg, which expects .deb (or "Debian")
packages.

If software provides .deb files, it's likely you can install them.
e The architecture must match (1386 / amd64 /arm/ ...)

o It may expect dependencies that are too old / too new / not
available if it was built for another distribution or release

If you have a .deb file, you can install it with apt, pulling
dependencies if needed (failing if impossible):

owner@linux:~$ apt install ./something.deb

53/105

Third-party repositories

Installing a single pre-built package means upgrading it is
fully manual. This is inconvenient and insecure.

54 /105

Third-party repositories
Installing a single pre-built package means upgrading it is
fully manual. This is inconvenient and insecure.

Many projects provide a third-party repository. Adding it to
apt's sources.list allows easy installation and automated
updates.

In fact, many popular .deb installers automatically add their
respective repository as well.

54 /105

Third-party repositories
Installing a single pre-built package means upgrading it is
fully manual. This is inconvenient and insecure.

Many projects provide a third-party repository. Adding it to
apt's sources.list allows easy installation and automated
updates.

In fact, many popular .deb installers automatically add their
respective repository as well.

This is a common way to install newer software versions in a
static distribution.

54 /105

Aside: /etc/**.d

/etc/ contains many subfolders of the form something.d.

This is a convention to allow splitting configuration files into
multiple smaller files.

55/105

Aside: /etc/**.d

/etc/ contains many subfolders of the form something.d.

This is a convention to allow splitting configuration files into
multiple smaller files.

sources. list follows this convention: besides the main file,
everything matching /etc/apt/sources.list.d/*.list will be
used.

It is a good practice to create new . list files for third-party
repostitories.

55/105

Adding a software source

Let's go to https://nginx.org/ and locate the repository for
newest (mainline) version.

56 /105

https://nginx.org/

Adding a software source

Let's go to https://nginx.org/ and locate the repository for
newest (mainline) version.

Strings to add (for Ubuntu 18.04):

deb http://nginx.org/packages/mainline/ubuntu/ bionic nginx

deb-src http://nginx.org/packages/mainline/ubuntu/ bionic nginx

(Exercise:

(Optional) If your OS is Debian but not Ubuntu 18.04, find
the correct deb string.

Create a new file /etc/apt/sources.list.d/nginx.list with
those lines.

56 /105

https://nginx.org/

Package management: security matters

If we try to download package information from the newly-
added repository, it will fail:

owner@linux:~$ sudo apt update

[...]

Err:5 http://nginx.org/packages/mainline/ubuntu bionic InRelease

The following signatures couldn't be verified because the public key is not
available: NO_PUBKEY ABF5BD827BD9BF62

[...]

57 /105

Package management: security matters

If we try to download package information from the newly-
added repository, it will fail:

owner@linux:~$ sudo apt update

[...]

Err:5 http://nginx.org/packages/mainline/ubuntu bionic InRelease

The following signatures couldn't be verified because the public key is not
available: NO_PUBKEY ABF5BD827BD9BF62

[...]

All repository information must be signed by keys trusted by
apt. We do not trust the key used by nginx.org yet.

To fix, we need to download it as instructed and add it to apt:

owner@linux:~$ wget https://nginx.org/keys/nginx_signing.key
[...]

owner@linux:~$ sudo apt-key add nginx_signing.key
0] ¢

57 /105

https://nginx.org/en/linux_packages.html#mainline

Installing from a new repository

Before we can install software, we need to update our local
apt database:

owner@linux:~$ sudo apt update

[.

]

owner@linux:~$ sudo apt install -y nginx

[...]

We can confirm that apt installed a version from nginx.org by
consulting apt policy:

owner@linux:~$ nginx -v
nginx version: nginx/1.15.8
owner@linux:~$ apt policy nginx
-
**% 1,15.8-1~bilonic 500
500 http://nginx.org/packages/mainline/ubuntu bionic/nginx amd64 Packages

[

Ubuntu-specific: PPAs

Personal Package Archives are a special class of third-party
repositories indigenous to Ubuntu, hosted by Canonical.

They are easier to set up than manually adding the deb lines to
sources. list and manually importing keys.

owner@linux:~$ sudo add-apt-repository ppa:atareao/telegram

Otherwise, they function identical to 3rd-party repositories.

59/105

Installing from source

Some software we want may not have a ready binary package.

In that case, we must download its source, build and install it.

60 /105

Installing from source

Some software we want may not have a ready binary package.
In that case, we must download its source, build and install it.
How to do that differs greatly, but common workflow is:

Download the source

Check INSTALL or README files for requirements
Install dependencies

Run a configure script

Run make to build the software

Run sudo make install to install it

60 /105

Guessing dependencies

If you're lucky, dependencies are specified in terms of package
names.

61 /105

Guessing dependencies

If you're lucky, dependencies are specified in terms of package
names.

Often, they are not; as an example, what if the configure script
complains about a missing library foo? Or the build step can't
find foo.h?

61 /105

Guessing dependencies

If you're lucky, dependencies are specified in terms of package
names.

Often, they are not; as an example, what if the configure script
complains about a missing library foo? Or the build step can't
find foo.h?

1. Remember that apt search is your friend.
2. Debian packages for libraries are normally called libfoo*.

3. For compilation, you need header files for libraries. By
convention, those are named libfoo-dev.

61 /105

Guessing dependencies

If you're lucky, dependencies are specified in terms of package
names.

Often, they are not; as an example, what if the configure script
complains about a missing library foo? Or the build step can't
find foo.h?

1. Remember that apt search is your friend.
2. Debian packages for libraries are normally called libfoo*.

3. For compilation, you need header files for libraries. By
convention, those are named libfoo-dev.

When everything else fails, Google it!

61 /105

Example: install Singularity

We'll try installing Singularity

(Exercise:

Follow instructions to install Singularity at
https://www.sylabs.io/guides/2.6/user-

guide/installation.html#install-a-specific-release
Use VER="2.6.1"
Dependencies:

build-essential squashfs-tools libarchive-dev

62 /105

https://www.sylabs.io/guides/2.6/user-guide/installation.html#install-a-specific-release

Example: install Singularity

We'll try installing Singularity

(Exercise:

Follow instructions to install Singularity at
https://www.sylabs.io/guides/2.6/user-
guide/installation.html#install-a-specific-release

Use VER="2.6.1"
Dependencies:

build-essential squashfs-tools libarchive-dev

Let's test it!

owner@linux:~$ singularity run docker://godlovedc/lolcow

62 /105

https://www.sylabs.io/guides/2.6/user-guide/installation.html#install-a-specific-release

Bonus: Universal Install Script

INSTALL.SH
#/bin/bosh

pipinstall “$1° &

_install “§1° &
ﬁ install “$1° &
npm install $1" &
yum install ‘81" & dnf instoll “$1" &
docker run 81" &
pkg install ‘81" &
opt-get install “$1" &
sudo opt-get instal| “$1" &
steomcmd +app_update "$1" validate &
git clone https:/github.com/"$1°/°$1 &
cd “$1";. /configure; make;moke install &
corl “$1" | bash &

Image credit: XKCD #1654

63 /105

https://xkcd.com/1654/

User management

A user is a basic unit of access control; it has a set of
credentials to access the system and owns some files on it.

A group is a collection of users to facilitate shared access to
resources. A user can belong to many groups but one group is
considered primary.

As an admin, you may need to add/delete users and change
their rights and passwords.

This intro only covers the basic scenario of local users and
groups.

64 /105

User and group information

For local users and groups, their information is stored in:

« /etc/passwd - users, their primary groups and basic settings
e /etc/shadow - hashed user passwords and expiration data
e /etc/group - group and their members

Advice:

Do not edit these files directly; use specialized utilities.

65 /105

User and group information

For local users and groups, their information is stored in:

« /etc/passwd - users, their primary groups and basic settings
e /etc/shadow - hashed user passwords and expiration data
e /etc/group - group and their members

Advice:
Do not edit these files directly; use specialized utilities.

You can use getent <database> to access these lists, or getent
<database> <id> to get a specific record.

owner@linux:~$ getent passwd owner

owner:x:1001:1001:,,,:/home/owner:/bin/bash

65 /105

Changing passwords

Any user can change their own password with passwd, if they
can provide their current one:

owner@linux:~$ passwd
Changing password for owner.
(current) UNIX password:

Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

66 /105

Changing passwords

Any user can change their own password with passwd, if they
can provide their current one:

owner@linux:~$ passwd
Changing password for owner.
(current) UNIX password:

Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Superuser can change any account's password without
knowing the current one:

owner@linux:~$ sudo passwd owner
Enter new UNIX password:

Retype new UNIX password:
passwd: password updated successfully

Aside: home folder encryption

If a user's home folder is encrypted, the decryption key is
protected with their password.

In case the user changes their own password, the decryption
key is automatically re-encrypted using the provided old
password.

In case of an admin password change, the user's old password
will still be needed to unlock the decryption key.

67 /105

Editing users, groups and their relation

To add a user, use adduser <users; it will interactively ask for
information.

By default, it will automatically create a new home folder and
a primary group with the same name and one member.

68 /105

Editing users, groups and their relation

To add a user, use adduser <users; it will interactively ask for
information.

By default, it will automatically create a new home folder and
a primary group with the same name and one member.

To add a group, use addgroup <group>.

To add an existing user to a group, adduser <user> <group>

68 /105

Editing users, groups and their relation

To add a user, use adduser <users; it will interactively ask for
information.

By default, it will automatically create a new home folder and
a primary group with the same name and one member.

To add a group, use addgroup <group>.
To add an existing user to a group, adduser <user> <group>
To remove a user from a group, use deluser <user> <group>

Users and groups are deleted with deluser <user> and
delgroup <group>

Reference: man adduser, man deluser

68 /105

The ske'-eton of a home

When a new user's home folder is created, it's possible to
automatically populate its contents.

Contents of /etc/skel are used as a template.

They are copied to the new home folder and changed to be
owned by the new user.

69 /105

Exercise: adding a user

(Exercise:

Create a user test_user

Change to that user with su - test_user
Try using sudo

Add the user to sudo group

Try again

SR S o

Delete the user (with - -remove-home)

(.

(Note:
A change in user's groups only fully applies if they log out

70 /105

Examining your system

An important part of Linux administration is being able to
gather information about the running system.

In this section multiple ways to do that are presented.

71 /105

What's the hardware?

Common commands to gather info about the hardware:

e cat /proc/cpuinfo and lscpu present CPU information

Lspci shows devices connected to the system bus

1susb shows devices connected via USB

Lsblk shows storage devices and their partitions

1shw shows a hierarchical view of all hardware

e dmidecode shows information reported by the motherboard

Exercise:
Try them all out; they should be run as root

72 /105

What are the network settings?

ip is the command to access networking information in
modern Linux systems.

For example, ip a shows addresses assigned to all interfaces.

Basic network settings are accessible through /etc/networks.

73 /105

Are we running out of space?

df -h (for "disk free") shows how much space is used per
filesystem.

(Note:

Ext filesystems reserve part of available space for
emergency use by root. It will show up as used.

The amount can be changed on the fly with tune2fs.

74 /105

Are we running out of space?

df -h (for "disk free") shows how much space is used per
filesystem.

(Note:

Ext filesystems reserve part of available space for
emergency use by root. It will show up as used.

The amount can be changed on the fly with tune2fs.

free -h shows information about used memory.

Note the difference between "free" (unused) and "available"
(ready to be emptied) memory.

As such, low free memory is not cause for concern.

Reference: Reserved space for root on a filesystem - why?

74 /105

https://unix.stackexchange.com/questions/7950/reserved-space-for-root-on-a-filesystem-why

What's eating all the space?

The command du (for "disk usage") allows for calculation of
real size of folders.

e du -h <path> calculates all folder sizes recursively from
provided path.

e -s provides a summary: only the total for the path.
e -d <level> provides numbers up to <level> deep

e -x stops du from crossing into different filesystems
(very useful for /)

Exercise:

Trydu -h -d 1 ~to measure use of your home folder

75 /105

What's eating all the space?

The command du (for "disk usage") allows for calculation of
real size of folders.

e du -h <path> calculates all folder sizes recursively from
provided path.

e -s provides a summary: only the total for the path.
e -d <level> provides numbers up to <level> deep

e -x stops du from crossing into different filesystems
(very useful for /)

Exercise:
Trydu -h -d 1 ~to measure use of your home folder

A friendlier interface for the same task is ncdu.

75 /105

How's the load?

uptime shows how long the system has been running, as well
as how busy the CPU is.

owner@linux:~$ uptime

10:04:17 up 1:03, 1 user, Lload average: 0.08, 0.02, 0.01

76 /105

How's the load?

uptime shows how long the system has been running, as well
as how busy the CPU is.

owner@linux:~$ uptime

10:04:17 up 1:03, 1 user, Lload average: 0.08, 0.02, 0.01

In this example, the system has been running for 1h3m.

76 /105

How's the load?

uptime shows how long the system has been running, as well
as how busy the CPU is.

owner@linux:~$ uptime

10:04:17 up 1:03, 1 user, Lload average: 0.08, 0.02, 0.01

In this example, the system has been running for 1h3m.

Load average can be seen as a ratio of scheduled CPU tasks vs
1dle time in a given time window (1, 5, and 15 minutes).

Ideally, this ratio should not be much more than amount of
virtual cores in the system.

76 /105

How's the load?

uptime shows how long the system has been running, as well
as how busy the CPU is.

owner@linux:~$ uptime

10:04:17 up 1:03, 1 user, Lload average: 0.08, 0.02, 0.01

In this example, the system has been running for 1h3m.

Load average can be seen as a ratio of scheduled CPU tasks vs
1dle time in a given time window (1, 5, and 15 minutes).

Ideally, this ratio should not be much more than amount of
virtual cores in the system.

It also lists number of logged-in users. They are listed by who.

76 /105

What's running?

ps is a utility to list running processes in the system.

Its output is highly tunable; my personal preference is ps aux
for all processes on the system.

77 /105

What's running?

ps is a utility to list running processes in the system.

Its output is highly tunable; my personal preference is ps aux
for all processes on the system.

A more intuitive overview can be obtained with pstree -u,
which shows processes by parent-child relation.

77 /105

What's running?

ps is a utility to list running processes in the system.

Its output is highly tunable; my personal preference is ps aux
for all processes on the system.

A more intuitive overview can be obtained with pstree -u,
which shows processes by parent-child relation.

For automation purposes, pgrep is also useful.

77 /105

What's hogging all the CPU / RAM?

top is @ monitor of system resources.
It allows to quickly see what's using up system resources.

A nicer modern version is htop.

78 /105

What is Reeping things open?

Lsof is a tool to see all open files and file-like objects by
processes.

Lsof <path> shows processes keeping files under <path> open.

Lsof -1 displays all open network ports.

79 /105

How to see logs?

As mentioned before, most logs are stored under /var/log/

Logs are periodically "rotated", with older ones having .1, .2,
... appended to them. Oldest ones may be compressed.

« To see plain-text logs, less is recommended.

e zless allows viewing compressed archives (.N.gz) directly.
e tail -f allows monitoring new log entries as they appear.
« dmesg shows kernel logs since boot.

However, on modern systems using systemd many logs are
collected (or at least mirrored) in a single database accessed
through journalctl.

80 /105

WorRing with services

Unlike programs we run directly, services (or daemons) are
run in the background, to be ready to respond to tasks.

A web server, a database server, or SSH server are examples
of services.

81/105

WorRing with services

Unlike programs we run directly, services (or daemons) are
run in the background, to be ready to respond to tasks.

A web server, a database server, or SSH server are examples
of services.

To understand services, we first need to undestand init.

When Linux boots, the kernel starts process ID 1, init, which
1s responsible for starting and managing all other processes.

Advice:
It's very helpful to see pstree output here.

Init has lists of various services and rules as to when and how
to run them:.

81/105

Initand systemd

Init systems of old were collection of scripts that would start
and stop services and were controlled with service command.

82 /105

Initand systemd

Init systems of old were collection of scripts that would start
and stop services and were controlled with service command.

In recent years, the majority of Linux distributions switched
to using systemd, which is, among other things, an Init system.

It has controversial reputation, but is the current reality.

82 /105

Initand systemd

Init systems of old were collection of scripts that would start
and stop services and were controlled with service command.

In recent years, the majority of Linux distributions switched
to using systemd, which is, among other things, an Init system.

It has controversial reputation, but is the current reality.

Under systemd, services are called units and are controlled
with the systemctl command.

82 /105

Units

Units in systemd are stored in various locations; typically, OS-
provided units are stored in /1ib/systemd/system, and
/etc/systemd/system is a good location for custom units.

Unit (service) files are small configuration files describing
how and when a service is run.

The list of units can be obtained with systemctl list-unit-
files.

Services can be enabled or disabled, which reflects whether
they will be automatically started (e.g. on boot).

Services can be in started (running) or stopped state.

83 /105

Checking services

To check a service's state, use systemctl status <services. It
prints its current state plus a small excerpt of its log.

owner@Llinux:~$ systemctl status nginx
e nginx.service - nginx - high performance web server

Loaded:
Active:
Docs:
Process:
Main PID:
Tasks:
CGroup:

Jan 17 02
Jan 17 02

loaded (/lib/systemd/system/nginx.service; enabled; vendor preset: ¢
active (running) since Thu 2019-01-17 02:01:25 CET; 2h 11min ago
http://nginx.org/en/docs/
872 ExecStart=/usr/sbin/nginx -c /etc/nginx/nginx.conf (code=exited
900 (nginx)
2 (limit: 1110)
/system.slice/nginx.service
900 nginx: master process /usr/sbin/nginx -c /etc/nginx/nginx.co
901 nginx: worker process

:01:25 1linux-owner-test systemd[1]: Starting nginx - high performance
:01:25 linux-owner-test systemd[1]: Started nginx - high performance

84 /105

Checking services

To check a service's state, use systemctl status <services. It
prints its current state plus a small excerpt of its log.

owner@Llinux:~$ systemctl status nginx
e nginx.service - nginx - high performance web server
Loaded: loaded (/lib/systemd/system/nginx.service; enabled; vendor preset: ¢
Active: active (running) since Thu 2019-01-17 02:01:25 CET; 2h 11min ago
Docs: http://nginx.org/en/docs/
Process: 872 ExecStart=/usr/sbin/nginx -c /etc/nginx/nginx.conf (code=exited
Main PID: 900 (nginx)
Tasks: 2 (limit: 1110)
CGroup: /system.slice/nginx.service
900 nginx: master process /usr/sbin/nginx -c /etc/nginx/nginx.co
901 nginx: worker process

Jan 17 02:01:25 1linux-owner-test systemd[1]: Starting nginx - high performance
Jan 17 02:01:25 linux-owner-test systemd[1]: Started nginx - high performance

Full log of a service can be seen with journalctl -u <service>

84 /105

Controlling services

To change service state (requires root):

e systemctl start <service> attempts to start a service
e systemctl stop <service> stops a service

e systemctl restart <service> stops and starts a service
e systemctl reload <service> allows changing service

configuration without restarting it. Not all units support it.

e systemctl enable <service> ensures a service will be
started automatically (e.g. on reboot)

e systemctl disable <service> prevents a service from
starting automatically

After (re)starting or reloading a service it's highly
recommended to check its status, in case some fatal error
occurred at start.

85 /105

Service configuration

For most services, the configuration is somewhere in /etc
For example, sshd configuration is at /etc/ssh/sshd.conf

It's important to remember that most services require a reload
or a restart after changing their configuration.

86 /105

Simplest service unit

Let's create a simple service that runs a shell script.

Exercise:
As root, add a file /opt/beep.sh:

#!/bin/bash
start() {
echo 'Beep!'

}

stop() {

echo 'Boop!'

}

case in
start|stop) "S1"
esac

Make it executable.

Simplest service unit

(Exercise:

o Add a file /etc/systemd/system/beep.service:

[Unit]
Description=Beep-boop

[Service]
Type=oneshot

ExecStart=/opt/beep.sh start
ExecStop=/opt/beep.sh stop
RemainAfterExit=yes

[Install]
WantedBy=multi-user.target

e Tell systemd about the unit with systemctl daemon-reload

e Try controlling it

\

Reference: How to write a startup script for systemd 88 /105

https://unix.stackexchange.com/questions/47695/how-to-write-startup-script-for-systemd

Scheduled and regular jobs

If you need some script to run at a later date, or at regular
intervals:

« at provides simple scheduling for later execution
« cron allows setting up repeating tasks

Working with cron requires understanding its (not very
obvious) configuration format.

Reference: A Beginners Guide To Cron Jobs

89 /105

https://www.ostechnix.com/a-beginners-guide-to-cron-jobs/

Security considerations

OS security is a large topic worthy of a separate course.

We will only briefly touch some basic topics.

90 /105

Importance of security updates

Security updates exist to eliminate found vulnerabilities in
software.

Vulnerabilities differ wildly in potential for exploitation, but
it's still sensible to close holes as soon as possible.

Updates that require a reboot should not be put off
indefinitely either.

91/105

Login security

Use good passwords. apg is a generator of strong passwords
that are easy to remember.

Safeguard your SSH keys. Do not use non-encrypted keys or
agent forwarding unless strictly necessary.

92 /105

Login security
Use good passwords. apg is a generator of strong passwords

that are easy to remember.

Safeguard your SSH keys. Do not use non-encrypted keys or
agent forwarding unless strictly necessary.

If possible, require public key authentication for SSH.

Use mechanisms like fail2ban to mitigate brute-force
attempts.

92 /105

Sensitive files and access rights

Denying others read permission on sensitive files (private
keys, security configuration, etc.) is a key protection.

Do not try to fix access problems with a permissive chmod. This
can do more harm than good.

93 /105

Encryption

Full-disk encryption protects against physical-access attacks.

Home folder encryption protects users against other users
(including admins).

Both come at the expense of some performance and risk of
data loss if encryption password is lost.

94 /105

Encryption IRL

HIS LAPTDPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
ELIJ£TER To CRACK \T.

NO GooD! TS
U056 -BIT R‘EH‘

E‘u”L F‘LHN
1S FOILED! ™~

_|A CRYPTO Hm::-’sl
I AGINATION -

WHAT WOULD
ACTUALLY HAPPEN:

H'S LAPTOF'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE. TELlS US THE. PASSWORD.

GOT IT.

*’W

Image credit: XKCD #538

95/105

https://xkcd.com/538/

Firewall

A firewall helps prevent unauthorized programs from
communicating.

You will have to designate services that are allowed to
communicate yourself, but it will prevent any surprises.

Ubuntu uses ufw as the firewall frontend, but low-level back-
end is iptables.

Packages have a way to add exceptions to firewall, so for

standard ports you usually don't need to manually intervene.

In desktop Ubuntu the firewall is disabled by default.

96 /105

SELinux / AppArmor

Sometimes, programs have to run as root to achieve one
specific thing, and can be a risk if they can be exploited.

There are kernel modules like SELinux that restrict activity of
processes based on configurable rules, even for root.

This allows to follow least-privilege principles at the expense
of complex-to-maintain configuration.

97 /105

Basic Troubleshooting

O HOULRS OKAY I SHOULD IO HOURS
7~ BEABLE TO DUAL- O
BooT BSD SOON. /-
WELL, THE DESKTOPS A LOST CAUSE,
BUT T THINK I CAN FIX THE
@i’ PROBLEMS THE LAPTOPS DEVELOPED,
6 HOURS 24 HOURS

B e A
- IF WERE LUCKY, THE SHARKS WILL STAY
AWAY UNTIL WE REACH SHALLOW WATER.
|
82 L IFWEMAGE ITBAGK ALVE, YOURE
NEVER UPGRADING ANYTHING AGAIN.

T BE HAPPY IF I CANGET
THE SYSTEM WORKING LIKE N
IT WAS WHEN I STARTED.

Image credit: XKCD #349

98 /105

https://xkcd.com/349/

Verbosity

When some program fails, it helps to ask it to produce more
low-level information, either in the output or in the logs.

Many programs have switches or configuration options for
that, often -v (for verbose).

There can even be multiple verbosity levels.

99 /105

Spying on programs
If a program is running into an unhelpful error, you can try

watching what it's doing under the hood.

strace is a general-purpose debugger (requiring root) that
monitors all system calls made by a process.

In practice, that means being able to trace e.g. all file access.

100 /105

Dealing with broken GUI

If your graphical environment can't function normally (hangs,
or you can't log in), you can try accessing text-mode consoles.

This is done with Ctrl+Alt+F1 through Ctrl+Alt+F12 to switch
between them.

Exercise:
Try accessing your TTYs (won't work over SSH)

101 /105

Dealing with broken boot

If your system can't boot normally, you can try booting it in
recovery mode.

Hold Shift or mash Esc during boot (after BIOS) to bring up the
GRUB menu.

From there, find and select recovery mode; the system will
boot in reduced "single user" mode, and you can select to start
a root shell to try and fix the system or apply other recovery
actions.

You need to be physically present to attempt this. This can be
used to circumvent / recover passwords as well.

102 /105

Dealing with really broken boot

If you can't boot even in recovery, you can boot from an
installation USB with a live Linux system, mount the
filesystem of the installed Linux and make changes that way.

Again, this requires physical presence, but fully bypasses any
and all security of the system (except encryption).

103 /105

Where to get help?

If you know the command, or the config file that you're trying
to use, man is your friend.

104 /105

Where to get help?

If you know the command, or the config file that you're trying
to use, man is your friend.

Also, Google is your friend! There's no shame in learning what
you don't know yet or looking up what you don't remember.

104 /105

Where to get help?

If you know the command, or the config file that you're trying
to use, man is your friend.

Also, Google is your friend! There's no shame in learning what
you don't know yet or looking up what you don't remember.

Some notable sites that are very helpful:

« StackExchange network: https://stackoverflow.com/,
https://superuser.com/, https://askubuntu.com/,
https://unix.stackexchange.com/, https://serverfault.com/

« DigitalOcean tutorials:
https://www.digitalocean.com/community/tutorials/

 nixCraft tutorials: https://www.cyberciti.biz/

104 /105

https://stackoverflow.com/
https://superuser.com/
https://askubuntu.com/
https://unix.stackexchange.com/
https://serverfault.com/
https://www.digitalocean.com/community/tutorials/
https://www.cyberciti.biz/

Where to get help?

If you know the command, or the config file that you're trying
to use, man is your friend.

Also, Google is your friend! There's no shame in learning what
you don't know yet or looking up what you don't remember.

Some notable sites that are very helpful:

« StackExchange network: https://stackoverflow.com/,
https://superuser.com/, https://askubuntu.com/,
https://unix.stackexchange.com/, https://serverfault.com/

« DigitalOcean tutorials:
https://www.digitalocean.com/community/tutorials/

 nixCraft tutorials: https://www.cyberciti.biz/

When searching for solutions, specifying your OS version is
helpful. Old advice sometimes does not apply to newer

|
systems! 104 /105

https://stackoverflow.com/
https://superuser.com/
https://askubuntu.com/
https://unix.stackexchange.com/
https://serverfault.com/
https://www.digitalocean.com/community/tutorials/
https://www.cyberciti.biz/

That's it!

Go forth and administrate!

105 /105

That's it!

Go forth and administrate!

..try not to break stuff, though.

T, UM, MESSED UP WHAT DID You 2o/?
My SERVER P%DH'N- 1usr/shore/ Adobe/doc /example/ | - 1\ ae e DEVICE 15 BUSY
T THE A ~# 15 W’“‘"’”F'ﬁ‘""?" rost/sbin/1s jor (SHOULD T TRY IT ATER?
LOOK. Error: Device is not responding.
YOU FH*JE THE YOU SHOULD SHUT DOWN
W!EJE‘ETTEO-{ THIS SYSTEM AND WAIT

FOR THE. SINGULARITY,

%ﬁ siniL gmil,

Image credit: XKCD #1084

105 /105

https://xkcd.com/1084/

