Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91906344
QSS.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 15, 15:25
Size
17 KB
Mime Type
text/x-python
Expires
Sun, Nov 17, 15:25 (2 d)
Engine
blob
Format
Raw Data
Handle
22343130
Attached To
R4670 PySONIC (old)
QSS.py
View Options
import
inspect
import
pandas
as
pd
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
matplotlib
import
cm
,
colors
from
..postpro
import
getFixedPoints
from
..core
import
NeuronalBilayerSonophore
from
.pltutils
import
*
from
..utils
import
logger
from
..batches
import
runBatch
def
plotVarQSSDynamics
(
neuron
,
a
,
Fdrive
,
Adrive
,
charges
,
varname
,
varrange
,
fs
=
12
):
''' Plot the QSS-approximated derivative of a specific variable as function of
the variable itself, as well as equilibrium values, for various membrane
charge densities at a given acoustic amplitude.
:param neuron: neuron object
:param a: sonophore radius (m)
:param Fdrive: US frequency (Hz)
:param Adrive: US amplitude (Pa)
:param charges: charge density vector (C/m2)
:param varname: name of variable to plot
:param varrange: range over which to compute the derivative
:return: figure handle
'''
# Extract information about variable to plot
pltvar
=
neuron
.
getPltVars
()[
varname
]
# Get methods to compute derivative and steady-state of variable of interest
derX_func
=
getattr
(
neuron
,
'der{}{}'
.
format
(
varname
[
0
]
.
upper
(),
varname
[
1
:]))
Xinf_func
=
getattr
(
neuron
,
'{}inf'
.
format
(
varname
))
derX_args
=
inspect
.
getargspec
(
derX_func
)[
0
][
1
:]
Xinf_args
=
inspect
.
getargspec
(
Xinf_func
)[
0
][
1
:]
# Get dictionary of charge and amplitude dependent QSS variables
nbls
=
NeuronalBilayerSonophore
(
a
,
neuron
,
Fdrive
)
_
,
Qref
,
lookups
,
QSS
=
nbls
.
quasiSteadyStates
(
Fdrive
,
amps
=
Adrive
,
charges
=
charges
,
squeeze_output
=
True
)
df
=
QSS
df
[
'Vm'
]
=
lookups
[
'V'
]
# Create figure
fig
,
ax
=
plt
.
subplots
(
figsize
=
(
6
,
4
))
ax
.
set_title
(
'{} neuron - QSS {} dynamics @ {:.2f} kPa'
.
format
(
neuron
.
name
,
pltvar
[
'desc'
],
Adrive
*
1e-3
),
fontsize
=
fs
)
ax
.
set_xscale
(
'log'
)
for
key
in
[
'top'
,
'right'
]:
ax
.
spines
[
key
]
.
set_visible
(
False
)
ax
.
set_xlabel
(
'$
\\
rm {}\ ({})$'
.
format
(
pltvar
[
'label'
],
pltvar
.
get
(
'unit'
,
''
)),
fontsize
=
fs
)
ax
.
set_ylabel
(
'$
\\
rm QSS\ d{}/dt\ ({}/s)$'
.
format
(
pltvar
[
'label'
],
pltvar
.
get
(
'unit'
,
'1'
)),
fontsize
=
fs
)
ax
.
set_ylim
(
-
40
,
40
)
ax
.
axhline
(
0
,
c
=
'k'
,
linewidth
=
0.5
)
y0_str
=
'{}0'
.
format
(
varname
)
if
hasattr
(
neuron
,
y0_str
):
ax
.
axvline
(
getattr
(
neuron
,
y0_str
)
*
pltvar
.
get
(
'factor'
,
1
),
label
=
y0_str
,
c
=
'k'
,
linewidth
=
0.5
)
# For each charge value
icolor
=
0
for
j
,
Qm
in
enumerate
(
charges
):
lbl
=
'Q = {:.0f} nC/cm2'
.
format
(
Qm
*
1e5
)
# Compute variable derivative as a function of its value, as well as equilibrium value,
# keeping other variables at quasi steady-state
derX_inputs
=
[
varrange
if
arg
==
varname
else
df
[
arg
][
j
]
for
arg
in
derX_args
]
Xinf_inputs
=
[
df
[
arg
][
j
]
for
arg
in
Xinf_args
]
dX_QSS
=
neuron
.
derCai
(
*
derX_inputs
)
Xeq_QSS
=
neuron
.
Caiinf
(
*
Xinf_inputs
)
# Plot variable derivative and its root as a function of the variable itself
c
=
'C{}'
.
format
(
icolor
)
ax
.
plot
(
varrange
*
pltvar
.
get
(
'factor'
,
1
),
dX_QSS
*
pltvar
.
get
(
'factor'
,
1
),
c
=
c
,
label
=
lbl
)
ax
.
axvline
(
Xeq_QSS
*
pltvar
.
get
(
'factor'
,
1
),
linestyle
=
'--'
,
c
=
c
)
icolor
+=
1
ax
.
legend
(
frameon
=
False
,
fontsize
=
fs
-
3
)
for
item
in
ax
.
get_xticklabels
()
+
ax
.
get_yticklabels
():
item
.
set_fontsize
(
fs
)
fig
.
tight_layout
()
fig
.
canvas
.
set_window_title
(
'{}_QSS_{}_dynamics_{:.2f}kPa'
.
format
(
neuron
.
name
,
varname
,
Adrive
*
1e-3
))
return
fig
def
plotQSSvars
(
neuron
,
a
,
Fdrive
,
Adrive
,
fs
=
12
):
''' Plot effective membrane potential, quasi-steady states and resulting membrane currents
as a function of membrane charge density, for a given acoustic amplitude.
:param neuron: neuron object
:param a: sonophore radius (m)
:param Fdrive: US frequency (Hz)
:param Adrive: US amplitude (Pa)
:return: figure handle
'''
# Get neuron-specific pltvars
pltvars
=
neuron
.
getPltVars
()
# Compute neuron-specific charge and amplitude dependent QS states at this amplitude
nbls
=
NeuronalBilayerSonophore
(
a
,
neuron
,
Fdrive
)
_
,
Qref
,
lookups
,
QSS
=
nbls
.
quasiSteadyStates
(
Fdrive
,
amps
=
Adrive
,
squeeze_output
=
True
)
Vmeff
=
lookups
[
'V'
]
# Compute QSS currents
currents
=
neuron
.
currents
(
Vmeff
,
np
.
array
([
QSS
[
k
]
for
k
in
neuron
.
states
]))
iNet
=
sum
(
currents
.
values
())
# Compute fixed points in dQdt profile
dQdt
=
-
iNet
Q_SFPs
=
getFixedPoints
(
Qref
,
dQdt
,
filter
=
'stable'
)
Q_UFPs
=
getFixedPoints
(
Qref
,
dQdt
,
filter
=
'unstable'
)
# Extract dimensionless states
norm_QSS
=
{}
for
x
in
neuron
.
states
:
if
'unit'
not
in
pltvars
[
x
]:
norm_QSS
[
x
]
=
QSS
[
x
]
# Create figure
fig
,
axes
=
plt
.
subplots
(
3
,
1
,
figsize
=
(
7
,
9
))
axes
[
-
1
]
.
set_xlabel
(
'$
\\
rm Q_m\ (nC/cm^2)$'
,
fontsize
=
fs
)
for
ax
in
axes
:
for
skey
in
[
'top'
,
'right'
]:
ax
.
spines
[
skey
]
.
set_visible
(
False
)
for
item
in
ax
.
get_xticklabels
()
+
ax
.
get_yticklabels
():
item
.
set_fontsize
(
fs
)
for
item
in
ax
.
get_xticklabels
(
minor
=
True
):
item
.
set_visible
(
False
)
figname
=
'{} neuron - QSS dynamics @ {:.2f} kPa'
.
format
(
neuron
.
name
,
Adrive
*
1e-3
)
fig
.
suptitle
(
figname
,
fontsize
=
fs
)
# Subplot: Vmeff
ax
=
axes
[
0
]
ax
.
set_ylabel
(
'$V_m^*$ (mV)'
,
fontsize
=
fs
)
ax
.
plot
(
Qref
*
1e5
,
Vmeff
,
color
=
'k'
)
ax
.
axhline
(
neuron
.
Vm0
,
linewidth
=
0.5
,
color
=
'k'
)
# Subplot: dimensionless quasi-steady states
cset
=
plt
.
get_cmap
(
'Dark2'
)
.
colors
+
plt
.
get_cmap
(
'tab10'
)
.
colors
ax
=
axes
[
1
]
ax
.
set_ylabel
(
'QSS gating variables (-)'
,
fontsize
=
fs
)
ax
.
set_yticks
([
0
,
0.5
,
1
])
ax
.
set_ylim
([
-
0.05
,
1.05
])
for
i
,
(
label
,
QS_state
)
in
enumerate
(
norm_QSS
.
items
()):
ax
.
plot
(
Qref
*
1e5
,
QS_state
,
label
=
label
,
c
=
cset
[
i
])
# Subplot: currents
ax
=
axes
[
2
]
cset
=
plt
.
get_cmap
(
'tab10'
)
.
colors
ax
.
set_ylabel
(
'QSS currents ($
\\
rm A/m^2$)'
,
fontsize
=
fs
)
for
i
,
(
k
,
I
)
in
enumerate
(
currents
.
items
()):
ax
.
plot
(
Qref
*
1e5
,
-
I
*
1e-3
,
'--'
,
c
=
cset
[
i
],
label
=
'$
\\
rm -{}$'
.
format
(
neuron
.
getPltVars
()[
k
][
'label'
]))
ax
.
plot
(
Qref
*
1e5
,
-
iNet
*
1e-3
,
color
=
'k'
,
label
=
'$
\\
rm -I_{Net}$'
)
ax
.
axhline
(
0
,
color
=
'k'
,
linewidth
=
0.5
)
if
Q_SFPs
.
size
>
0
:
ax
.
plot
(
Q_SFPs
*
1e5
,
np
.
zeros
(
Q_SFPs
.
size
),
'o'
,
c
=
'k'
,
markersize
=
5
,
zorder
=
2
)
if
Q_SFPs
.
size
>
0
:
ax
.
plot
(
Q_UFPs
*
1e5
,
np
.
zeros
(
Q_UFPs
.
size
),
'o'
,
c
=
'k'
,
markersize
=
5
,
mfc
=
'none'
,
zorder
=
2
)
fig
.
tight_layout
()
fig
.
subplots_adjust
(
right
=
0.8
)
for
ax
in
axes
[
1
:]:
ax
.
legend
(
loc
=
'center right'
,
fontsize
=
fs
,
frameon
=
False
,
bbox_to_anchor
=
(
1.3
,
0.5
))
for
ax
in
axes
[:
-
1
]:
ax
.
set_xticklabels
([])
fig
.
canvas
.
set_window_title
(
'{}_QSS_states_vs_Qm_{:.2f}kPa'
.
format
(
neuron
.
name
,
Adrive
*
1e-3
))
return
fig
def
plotQSSVarVsAmp
(
neuron
,
a
,
Fdrive
,
varname
,
amps
=
None
,
DC
=
1.
,
fs
=
12
,
cmap
=
'viridis'
,
yscale
=
'lin'
,
zscale
=
'lin'
):
''' Plot a specific QSS variable (state or current) as a function of
membrane charge density, for various acoustic amplitudes.
:param neuron: neuron object
:param a: sonophore radius (m)
:param Fdrive: US frequency (Hz)
:param amps: US amplitudes (Pa)
:param DC: duty cycle (-)
:param varname: extraction key for variable to plot
:return: figure handle
'''
# Determine stimulation modality
if
a
is
None
and
Fdrive
is
None
:
stim_type
=
'elec'
a
=
32e-9
Fdrive
=
500e3
else
:
stim_type
=
'US'
# Extract information about variable to plot
pltvar
=
neuron
.
getPltVars
()[
varname
]
Qvar
=
neuron
.
getPltVars
()[
'Qm'
]
Afactor
=
{
'US'
:
1e-3
,
'elec'
:
1.
}[
stim_type
]
# Q_SFPs = []
# Q_UFPs = []
log
=
'plotting {} neuron QSS {} vs. amp for {} stimulation @ {:.0f}% DC'
.
format
(
neuron
.
name
,
varname
,
stim_type
,
DC
*
1e2
)
logger
.
info
(
log
)
nbls
=
NeuronalBilayerSonophore
(
a
,
neuron
,
Fdrive
)
# Get reference dictionaries for zero amplitude
_
,
Qref
,
lookups0
,
QSS0
=
nbls
.
quasiSteadyStates
(
Fdrive
,
amps
=
0.
,
squeeze_output
=
True
)
Vmeff0
=
lookups0
[
'V'
]
if
stim_type
==
'elec'
:
# if E-STIM case, compute steady states with constant capacitance
Vmeff0
=
Qref
/
neuron
.
Cm0
*
1e3
QSS0
=
neuron
.
steadyStates
(
Vmeff0
)
df0
=
QSS0
df0
[
'Vm'
]
=
Vmeff0
# Create figure
fig
,
ax
=
plt
.
subplots
(
figsize
=
(
6
,
4
))
title
=
'{} neuron - {}steady-state {}'
.
format
(
neuron
.
name
,
'quasi-'
if
amps
is
not
None
else
''
,
pltvar
[
'desc'
])
if
amps
is
not
None
:
title
+=
'
\n
vs. {} amplitude @ {:.0f}% DC'
.
format
(
stim_type
,
DC
*
1e2
)
ax
.
set_title
(
title
,
fontsize
=
fs
)
ax
.
set_xlabel
(
'$
\\
rm {}\ ({})$'
.
format
(
Qvar
[
'label'
],
Qvar
[
'unit'
]),
fontsize
=
fs
)
ax
.
set_ylabel
(
'$
\\
rm QSS\ {}\ ({})$'
.
format
(
pltvar
[
'label'
],
pltvar
.
get
(
'unit'
,
''
)),
fontsize
=
fs
)
if
yscale
==
'log'
:
ax
.
set_yscale
(
'log'
)
for
key
in
[
'top'
,
'right'
]:
ax
.
spines
[
key
]
.
set_visible
(
False
)
# Plot y-variable reference line, if any
y0
=
None
y0_str
=
'{}0'
.
format
(
varname
)
if
hasattr
(
neuron
,
y0_str
):
y0
=
getattr
(
neuron
,
y0_str
)
*
pltvar
.
get
(
'factor'
,
1
)
elif
varname
in
neuron
.
getCurrentsNames
()
+
[
'iNet'
,
'dQdt'
]:
y0
=
0.
y0_str
=
''
if
y0
is
not
None
:
ax
.
axhline
(
y0
,
label
=
y0_str
,
c
=
'k'
,
linewidth
=
0.5
)
# Plot reference QSS profile of variable as a function of charge density
var0
=
extractPltVar
(
neuron
,
pltvar
,
pd
.
DataFrame
({
k
:
df0
[
k
]
for
k
in
df0
.
keys
()}),
name
=
varname
)
ax
.
plot
(
Qref
*
Qvar
[
'factor'
],
var0
,
'--'
,
c
=
'k'
,
zorder
=
1
,
label
=
'$
\\
rm A_{{{}}}=0$'
.
format
(
stim_type
))
# if varname == 'dQdt':
# Q_SFPs += getFixedPoints(Qref, var0, filter='stable').tolist()
# Q_UFPs += getFixedPoints(Qref, var0, filter='unstable').tolist()
# Define color code
mymap
=
plt
.
get_cmap
(
cmap
)
zref
=
amps
*
Afactor
if
zscale
==
'lin'
:
norm
=
colors
.
Normalize
(
zref
.
min
(),
zref
.
max
())
elif
zscale
==
'log'
:
norm
=
colors
.
LogNorm
(
zref
.
min
(),
zref
.
max
())
sm
=
cm
.
ScalarMappable
(
norm
=
norm
,
cmap
=
mymap
)
sm
.
_A
=
[]
# Get amplitude-dependent QSS dictionary
if
stim_type
==
'US'
:
# Get dictionary of charge and amplitude dependent QSS variables
_
,
Qref
,
lookups
,
QSS
=
nbls
.
quasiSteadyStates
(
Fdrive
,
amps
=
amps
,
DCs
=
DC
,
squeeze_output
=
True
)
df
=
QSS
df
[
'Vm'
]
=
lookups
[
'V'
]
else
:
# Repeat zero-amplitude QSS dictionary for all amplitudes
df
=
{
k
:
np
.
tile
(
df0
[
k
],
(
amps
.
size
,
1
))
for
k
in
df0
}
# Plot QSS profiles for various amplitudes
for
i
,
A
in
enumerate
(
amps
):
var
=
extractPltVar
(
neuron
,
pltvar
,
pd
.
DataFrame
({
k
:
df
[
k
][
i
]
for
k
in
df
.
keys
()}),
name
=
varname
)
if
varname
==
'dQdt'
and
stim_type
==
'elec'
:
var
+=
A
*
DC
*
pltvar
[
'factor'
]
ax
.
plot
(
Qref
*
Qvar
[
'factor'
],
var
,
c
=
sm
.
to_rgba
(
A
*
Afactor
),
zorder
=
0
)
# if varname == 'dQdt':
# # mark eq. point if starting point provided, otherwise mark all FPs
# Q_SFPs += getFixedPoints(Qref, var, filter='stable').tolist()
# Q_UFPs += getFixedPoints(Qref, var, filter='unstable').tolist()
# # Plot fixed-points, if any
# if len(Q_SFPs) > 0:
# ax.plot(np.array(Q_SFPs) * Qvar['factor'], np.zeros(len(Q_SFPs)), 'o', c='k',
# markersize=5, zorder=2)
# if len(Q_UFPs) > 0:
# ax.plot(np.array(Q_UFPs) * Qvar['factor'], np.zeros(len(Q_UFPs)), 'x', c='k',
# markersize=5, zorder=2)
# Add legend and adjust layout
ax
.
legend
(
frameon
=
False
,
fontsize
=
fs
)
for
item
in
ax
.
get_xticklabels
()
+
ax
.
get_yticklabels
():
item
.
set_fontsize
(
fs
)
fig
.
tight_layout
()
fig
.
subplots_adjust
(
bottom
=
0.15
,
top
=
0.9
,
right
=
0.80
,
hspace
=
0.5
)
# Plot amplitude colorbar
if
amps
is
not
None
:
cbarax
=
fig
.
add_axes
([
0.85
,
0.15
,
0.03
,
0.75
])
fig
.
colorbar
(
sm
,
cax
=
cbarax
)
cbarax
.
set_ylabel
(
'Amplitude ({})'
.
format
({
'US'
:
'kPa'
,
'elec'
:
'mA/m2'
}[
stim_type
]),
fontsize
=
fs
)
for
item
in
cbarax
.
get_yticklabels
():
item
.
set_fontsize
(
fs
)
title
=
'{}_{}SS_{}'
.
format
(
neuron
.
name
,
'Q'
if
amps
is
not
None
else
''
,
varname
)
if
amps
is
not
None
:
title
+=
'_vs_{}A_{}_{:.0f}%DC'
.
format
(
zscale
,
stim_type
,
DC
*
1e2
)
fig
.
canvas
.
set_window_title
(
title
)
return
fig
def
plotEqChargeVsAmp
(
neurons
,
a
,
Fdrive
,
amps
=
None
,
tstim
=
250e-3
,
toffset
=
50e-3
,
PRF
=
100.0
,
DCs
=
[
1.
],
fs
=
12
,
xscale
=
'lin'
,
titrate
=
False
,
mpi
=
False
):
''' Plot the equilibrium membrane charge density as a function of acoustic amplitude,
given an initial value of membrane charge density.
:param neurons: neuron objects
:param a: sonophore radius (m)
:param Fdrive: US frequency (Hz)
:param amps: US amplitudes (Pa)
:return: figure handle
'''
# Determine stimulation modality
if
a
is
None
and
Fdrive
is
None
:
stim_type
=
'elec'
a
=
32e-9
Fdrive
=
500e3
else
:
stim_type
=
'US'
logger
.
info
(
'plotting equilibrium charges for
%s
stimulation'
,
stim_type
)
# Create figure
fig
,
ax
=
plt
.
subplots
(
figsize
=
(
6
,
4
))
figname
=
'charge stability vs. amplitude'
ax
.
set_title
(
figname
)
ax
.
set_xlabel
(
'Amplitude ({})'
.
format
({
'US'
:
'kPa'
,
'elec'
:
'mA/m2'
}[
stim_type
]),
fontsize
=
fs
)
ax
.
set_ylabel
(
'$
\\
rm Q_m\ (nC/cm^2)$'
,
fontsize
=
fs
)
if
xscale
==
'log'
:
ax
.
set_xscale
(
'log'
)
for
skey
in
[
'top'
,
'right'
]:
ax
.
spines
[
skey
]
.
set_visible
(
False
)
for
item
in
ax
.
get_xticklabels
()
+
ax
.
get_yticklabels
():
item
.
set_fontsize
(
fs
)
Qrange
=
(
np
.
inf
,
-
np
.
inf
)
icolor
=
0
for
i
,
neuron
in
enumerate
(
neurons
):
nbls
=
NeuronalBilayerSonophore
(
a
,
neuron
,
Fdrive
)
# Compute reference charge variation array for zero amplitude
_
,
Qref
,
lookups0
,
QSS0
=
nbls
.
quasiSteadyStates
(
Fdrive
,
amps
=
0.
,
squeeze_output
=
True
)
Qrange
=
(
min
(
Qrange
[
0
],
Qref
.
min
()),
max
(
Qrange
[
1
],
Qref
.
max
()))
Vmeff0
=
lookups0
[
'V'
]
if
stim_type
==
'elec'
:
# if E-STIM case, compute steady states with constant capacitance
Vmeff0
=
Qref
/
neuron
.
Cm0
*
1e3
QSS0
=
neuron
.
steadyStates
(
Vmeff0
)
dQdt0
=
-
neuron
.
iNet
(
Vmeff0
,
np
.
array
([
QSS0
[
k
]
for
k
in
neuron
.
states
]))
# mA/m2
# Compute 3D QSS charge variation array
if
stim_type
==
'US'
:
_
,
_
,
lookups
,
QSS
=
nbls
.
quasiSteadyStates
(
Fdrive
,
amps
=
amps
,
DCs
=
DCs
)
dQdt
=
-
neuron
.
iNet
(
lookups
[
'V'
],
np
.
array
([
QSS
[
k
]
for
k
in
neuron
.
states
]))
# mA/m2
Afactor
=
1e-3
else
:
Afactor
=
1.
dQdt
=
np
.
empty
((
amps
.
size
,
Qref
.
size
,
DCs
.
size
))
for
iA
,
A
in
enumerate
(
amps
):
for
iDC
,
DC
in
enumerate
(
DCs
):
dQdt
[
iA
,
:,
iDC
]
=
dQdt0
+
A
*
DC
# For each duty cycle
for
iDC
,
DC
in
enumerate
(
DCs
):
color
=
'k'
if
len
(
neurons
)
*
len
(
DCs
)
==
1
else
'C{}'
.
format
(
icolor
)
# Initialize containers for stable and unstable fixed points
SFPs
=
[]
UFPs
=
[]
stab_points
=
[]
# Generate QSS batch queue
QSS_queue
=
[]
for
iA
,
Adrive
in
enumerate
(
amps
):
lookups1D
=
{
k
:
v
[
iA
,
:,
iDC
]
for
k
,
v
in
lookups
.
items
()}
lookups1D
[
'Q'
]
=
Qref
QSS_queue
.
append
([
Fdrive
,
Adrive
,
DC
,
lookups1D
,
dQdt
[
iA
,
:,
iDC
]])
# Run batch to find stable and unstable fixed points at each amplitude
QSS_output
=
runBatch
(
nbls
,
'quasiSteadyStateFixedPoints'
,
QSS_queue
,
mpi
=
mpi
)
# Generate simulations batch queue
sim_queue
=
nbls
.
createQueue
([
Fdrive
],
amps
,
[
tstim
],
[
toffset
],
[
PRF
],
[
DC
],
method
)
# Run batch to find stabilization points at each amplitude
sim_output
=
runBatch
(
nbls
,
'runIfNone'
,
sim_queue
,
extra_params
=
[
outdir
],
mpi
=
mpi
)
# Retrieve batch output
for
i
,
Adrive
in
enumerate
(
amps
):
SFPs
+=
[(
Adrive
,
Qm
)
for
Qm
in
QSS_output
[
i
][
0
]]
UFPs
+=
[(
Adrive
,
Qm
)
for
Qm
in
QSS_output
[
i
][
1
]]
# TODO: get stabilization point from simulation, if any
# Plot charge SFPs and UFPs for each acoustic amplitude
lbl
=
'{} neuron - {{}}stable fixed points @ {:.0f} % DC'
.
format
(
neuron
.
name
,
DC
*
1e2
)
if
len
(
SFPs
)
>
0
:
A_SFPs
,
Q_SFPs
=
np
.
array
(
SFPs
)
.
T
ax
.
plot
(
np
.
array
(
A_SFPs
)
*
Afactor
,
np
.
array
(
Q_SFPs
)
*
1e5
,
'o'
,
c
=
color
,
markersize
=
3
,
label
=
lbl
.
format
(
''
))
if
len
(
UFPs
)
>
0
:
A_UFPs
,
Q_UFPs
=
np
.
array
(
UFPs
)
.
T
ax
.
plot
(
np
.
array
(
A_UFPs
)
*
Afactor
,
np
.
array
(
Q_UFPs
)
*
1e5
,
'x'
,
c
=
color
,
markersize
=
3
,
label
=
lbl
.
format
(
'un'
))
# If specified, compute and plot the threshold excitation amplitude
if
titrate
:
if
stim_type
==
'US'
:
Athr
=
nbls
.
titrate
(
Fdrive
,
tstim
,
toffset
,
PRF
=
PRF
,
DC
=
DC
)
ax
.
axvline
(
Athr
*
Afactor
,
c
=
color
,
linestyle
=
'--'
)
else
:
for
Arange
,
ls
in
zip
([(
0.
,
amps
.
max
(
amps
.
min
(),
0.
)),
()],
[
'--'
,
'-.'
]):
Athr
=
neuron
.
titrate
(
tstim
,
toffset
,
PRF
=
PRF
,
DC
=
DC
,
Arange
=
Arange
)
ax
.
axvline
(
Athr
*
Afactor
,
c
=
color
,
linestyle
=
ls
)
icolor
+=
1
# Post-process figure
ax
.
set_ylim
(
np
.
array
([
Qrange
[
0
],
0
])
*
1e5
)
ax
.
legend
(
frameon
=
False
,
fontsize
=
fs
)
fig
.
tight_layout
()
fig
.
canvas
.
set_window_title
(
'QSS_Qstab_vs_{}A_{}_{}_{}%DC{}'
.
format
(
xscale
,
'_'
.
join
([
n
.
name
for
n
in
neurons
]),
stim_type
,
'_'
.
join
([
'{:.0f}'
.
format
(
DC
*
1e2
)
for
DC
in
DCs
]),
'_with_thresholds'
if
titrate
else
''
))
return
fig
Event Timeline
Log In to Comment