Page MenuHomec4science

threshold.py
No OneTemporary

File Metadata

Created
Fri, Nov 1, 03:26

threshold.py

# -*- coding: utf-8 -*-
# @Author: Theo Lemaire
# @Email: theo.lemaire@epfl.ch
# @Date: 2019-11-28 16:42:50
# @Last Modified by: Theo Lemaire
# @Last Modified time: 2019-12-02 19:18:42
import numpy as np
from .utils import logger
class OutOfBoundsError(Exception):
def __init__(self, bounds):
msg = f'No threshold found within the [{bounds[0]:.2e} - {bounds[1]:.2e}] interval'
super().__init__(msg)
class MaxNIterations(Exception):
def __init__(self, max_nit, step, history):
msg = f'Maximum number of iterations ({max_nit}) reached during {step} step, history = {history}'
super().__init__(msg)
def threshold(feval, xbounds, x0=None, eps_thr=None, rel_eps_thr=1e-2, max_nit=50, precheck=False, fbound=2, output_history=False):
''' Determine the threshold satisfying a given condition within a continuous search interval,
using a binary search with initial preconditioning.
:param feval: evaluation function returning whether condition is satisfied for a given value
:param xbounds: initial search interval for threshold
:param x0: initial evaluation value
:param eps_thr: maximum absolute error
:param rel_eps_thr: maximum relative error
:param precheck: boolean stating whether to perform an initial check
for the existence of a threshold within the interval
:param fbound: integer factor indicating the magnitude of the initial bounding procedure
:param output_history: boolean stating whether to return history of search procedure
:return: final threshold, or full search history
'''
err_val = np.nan
# Define internal function to evaluate at the appropriate bound
def checkAtBound():
xeval = lb if is_above[-1] else ub
if feval(xeval) == is_above[-1]:
raise OutOfBoundsError(xbounds)
# If factor bounding selected, lower bound cannot be zero
if xbounds[0] == 0. and fbound is not None:
# If absolute threshold is provided -> use it to set lower bound
if eps_thr is not None:
xbounds = (eps_thr / 2, xbounds[1])
# Otherwise, use a very small lower bound (machine epsilon)
else:
eps_machine = np.sqrt(np.finfo(float).eps)
xbounds = (eps_machine, xbounds[1])
# Set absolute threshold to infinity if not specified
if eps_thr is None:
eps_thr = np.inf
# Set initial value to geometric mean of search interval if not specified
if x0 is None:
x0 = np.sqrt(xbounds[0] * xbounds[1])
# Adjust initial value to mid-point of search interval if set to zero
if x0 == 0.:
x0 = (xbounds[0] + xbounds[1]) / 2
# Initialize internal variables
lb, ub = xbounds # lower and upper bound
x = [x0] # history of evaluated values
is_above = [feval(x[-1])] # history of evaluation outcomes
try:
# Pre-checking: evaluate at the interval bound in the direction given by the initial
# evaluation (above theshold -> lb, below threshold > ub) and return None
# if evaluation indicates no threshold within interval
if precheck:
checkAtBound()
# Pre-bounding: refine search interval by either multiplying or dividing x
# by a specific integer factor k until target lies within an interval [x, kx]
if fbound is not None:
if 0 in xbounds:
logger.warning('factor bounding unavailable when 0 is in the search bounds')
else:
# Assert compatibility of search interval with factor bounding
assert ub / lb > 2 * fbound, f'search interval too narrow for factor bounding'
# If exact match between x * f and ub or between lb * f and x, adapt f slightly
if x[-1] * fbound == ub or lb * fbound == x[-1]:
fbound *= 0.99
# Carry on only if bounding factor greater than 1
if fbound >= 1:
# Iterate until both bounds have been updated
while lb == xbounds[0] or ub == xbounds[1]:
# Refine interval and x based on feval result
if is_above[-1]:
ub = x[-1]
x.append(ub / fbound)
else:
lb = x[-1]
x.append(fbound * lb)
# If lower bound greater or equal to upper bound -> error
if lb >= ub:
raise OutOfBoundsError(xbounds)
is_above.append(feval(x[-1]))
if len(x) >= max_nit:
raise MaxNIterations(max_nit, 'pre-bounding', x)
# Assert validity of refined interval
# assert ub / lb == fbound, f'restricted search interval should be of type [x, {fbound}x]'
# Set x to interval mid-point and re-evaluate
x.append((ub + lb) / 2)
is_above.append(feval(x[-1]))
# Binary search until search interval is smaller than most stringent threshold criterion
while not (np.abs(ub - lb) <= 2 * min(rel_eps_thr * lb, eps_thr)):
# Refine interval based on feval result
if is_above[-1]:
ub = x[-1]
else:
lb = x[-1]
# Set x to interval mid-point and re-evaluate
x.append((ub + lb) / 2)
is_above.append(feval(x[-1]))
if len(x) >= max_nit:
raise MaxNIterations(max_nit, 'binary search', x)
# If search direction has not changed along the procedure, evaluate at appropriate bound
if len(set(is_above)) == 1:
checkAtBound()
# At this point, upper bound is necessarily above threshold
# and lower bound is necessarily below threshold
# If last value is not above threshold
if not is_above[-1]:
# Set x to interval mid-point and re-evaluate (to ensure relative convergence)
lb = x[-1]
x.append((ub + lb) / 2)
is_above.append(feval(x[-1]))
# If last value still not above threshold, replace it by upper bound
if not is_above[-1]:
x[-1] = ub
is_above[-1] = True
# If precheck was ON, update history a posteriori
if precheck:
if is_above[0]:
x1 = xbounds[0]
is_above1 = False
else:
x1 = xbounds[1]
is_above1 = True
x = [x[0], x1] + x[1:]
is_above = [is_above[0], is_above1] + is_above[1:]
except (OutOfBoundsError, MaxNIterations) as err:
# If precheck was ON, update history a posteriori
if precheck:
if is_above[0]:
x1 = xbounds[0]
is_above1 = False
else:
x1 = xbounds[1]
is_above1 = True
x = [x[0], x1, x1] + x[1:]
is_above = [is_above[0], is_above1, is_above1] + is_above[1:]
logger.error(err)
x[-1] = err_val
# Conditional return
if output_history:
return np.array(x), np.array(is_above)
else:
return x[-1]

Event Timeline