Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91687101
test_alpham_eff_Taylor.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 13, 11:38
Size
4 KB
Mime Type
text/x-python
Expires
Fri, Nov 15, 11:38 (2 d)
Engine
blob
Format
Raw Data
Handle
22307626
Attached To
R4670 PySONIC (old)
test_alpham_eff_Taylor.py
View Options
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author: Theo Lemaire
# @Date: 2017-03-21 11:38:56
# @Email: theo.lemaire@epfl.ch
# @Last Modified by: Theo Lemaire
# @Last Modified time: 2017-03-29 19:40:44
""" Perform Taylor expansions (up to 4th order) of the alpha_m function
along one acoustic cycle. """
import
importlib
import
numpy
as
np
from
scipy.special
import
factorial
import
matplotlib.pyplot
as
plt
import
matplotlib.cm
as
cm
import
nblscore
from
utils
import
LoadParams
,
rescale
,
bilinearExp
from
constants
import
*
importlib
.
reload
(
nblscore
)
# reloading nblscore module
# Load NBLS parameters
params
=
LoadParams
(
"params.yaml"
)
biomech
=
params
[
'biomech'
]
ac_imp
=
biomech
[
'rhoL'
]
*
biomech
[
'c'
]
# Rayl
# Set geometry of NBLS structure
a
=
32e-9
# in-plane radius (m)
d
=
0.0e-6
# embedding tissue thickness (m)
geom
=
{
"a"
:
a
,
"d"
:
d
}
# Create a NBLS instance here (with dummy frequency parameter)
nbls
=
nblscore
.
NeuronalBilayerSonophore
(
geom
,
params
,
0.0
,
True
)
# Set stimulation parameters
Fdrive
=
3.5e5
# Hz
Adrive
=
1e5
# Pa
phi
=
np
.
pi
# acoustic wave phase
# Set charge linear space
nQ
=
100
charges
=
np
.
linspace
(
-
80.0
,
50.0
,
nQ
)
*
1e-5
# C/m2
Qmin
=
np
.
amin
(
charges
)
Qmax
=
np
.
amax
(
charges
)
# Set alpha_m parameters
am_params
=
(
-
43.2
,
-
0.32
,
0.25
)
# Set highest Taylor expansion order
norder
=
4
# Set time vector
T
=
1
/
Fdrive
t
=
np
.
linspace
(
0
,
T
,
NPC_FULL
)
dt
=
t
[
1
]
-
t
[
0
]
# Initialize coefficients vectors
deflections
=
np
.
empty
((
nQ
,
NPC_FULL
))
Vm
=
np
.
empty
((
nQ
,
NPC_FULL
))
alpham
=
np
.
empty
((
nQ
,
NPC_FULL
))
# Run mechanical simulations for each imposed charge density
print
(
'Running {} mechanical simulations with imposed charge densities'
.
format
(
nQ
))
simcount
=
0
for
i
in
range
(
nQ
):
simcount
+=
1
# Log to console
print
(
'--- sim {}/{}: Q = {:.1f} nC/cm2'
.
format
(
simcount
,
nQ
,
charges
[
i
]
*
1e5
))
# Run simulation and retrieve deflection vector
(
_
,
y
,
_
)
=
nbls
.
runMech
(
Adrive
,
Fdrive
,
phi
,
charges
[
i
])
(
_
,
Z
,
_
)
=
y
deflections
[
i
,
:]
=
Z
[
-
NPC_FULL
:]
# Compute Vm and alpham vectors
Vm
[
i
,
:]
=
[
charges
[
i
]
/
nbls
.
Capct
(
ZZ
)
for
ZZ
in
deflections
[
i
,
:]]
alpham
[
i
,
:]
=
bilinearExp
(
Vm
[
i
,
:]
*
1e3
,
am_params
,
0
)
# time-average Vm and alpham
Vmavg
=
np
.
mean
(
Vm
,
axis
=
1
)
alphamavg
=
np
.
mean
(
alpham
,
axis
=
1
)
# (Vm - Vmavg) differences along cycle
Vmavgext
=
np
.
tile
(
Vmavg
,
(
NPC_FULL
,
1
))
.
transpose
()
Vmdiff
=
(
Vm
-
Vmavgext
)
*
1e3
# alpham derivatives
dalpham
=
np
.
empty
((
norder
+
1
,
nQ
))
for
j
in
range
(
norder
+
1
):
dalpham
[
j
,
:]
=
bilinearExp
(
Vmavg
*
1e3
,
am_params
,
j
)
# Taylor expansions along cycle
Talpham
=
np
.
empty
((
norder
+
1
,
nQ
,
NPC_FULL
))
dalphamext
=
np
.
tile
(
dalpham
.
transpose
(),
(
NPC_FULL
,
1
,
1
))
.
transpose
()
Talpham
[
0
,
:,
:]
=
dalphamext
[
0
,
:,
:]
for
j
in
range
(
1
,
norder
+
1
):
jterm
=
dalphamext
[
j
,
:,
:]
*
Vmdiff
[:,
:]
**
j
/
factorial
(
j
)
Talpham
[
j
,
:,
:]
=
Talpham
[
j
-
1
,
:,
:]
+
jterm
# time-averaging of Taylor expansions
Talphamavg
=
np
.
mean
(
Talpham
,
axis
=
2
)
# ------------------ PLOTS -------------------
mymap
=
cm
.
get_cmap
(
'jet'
)
sm_Q
=
plt
.
cm
.
ScalarMappable
(
cmap
=
mymap
,
norm
=
plt
.
Normalize
(
Qmin
*
1e5
,
Qmax
*
1e5
))
sm_Q
.
_A
=
[]
t_factor
=
1e6
# 1: time average Vm
_
,
ax
=
plt
.
subplots
(
figsize
=
(
22
,
10
))
ax
.
set_xlabel
(
'$Qm\ [uF/cm^2]$'
,
fontsize
=
20
)
ax
.
set_ylabel
(
'$
\\
overline{V_m}\ [mV]$'
,
fontsize
=
20
)
ax
.
plot
(
charges
*
1e5
,
Vmavg
*
1e3
,
linewidth
=
2
)
# 2: alpham: standard time-averaged vs.evaluated at time-average Vm
# vs. Taylor reconstructions around Vm_avg
_
,
ax
=
plt
.
subplots
(
figsize
=
(
22
,
10
))
ax
.
set_xlabel
(
'$Qm\ [uF/cm^2]$'
,
fontsize
=
20
)
ax
.
set_ylabel
(
'$[ms^{-1}]$'
,
fontsize
=
20
)
ax
.
plot
(
charges
*
1e5
,
alphamavg
,
linewidth
=
2
,
label
=
'$
\\
overline{
\\
alpha_m(V_m)}$'
)
for
j
in
range
(
norder
+
1
):
ax
.
plot
(
charges
*
1e5
,
Talphamavg
[
j
,
:],
linewidth
=
2
,
label
=
'$
\\
overline{T_'
+
str
(
j
)
+
'[
\\
alpha_m(
\\
overline{V_m})]}$'
)
ax
.
legend
(
fontsize
=
20
)
# 3: original alpham vs. highest order Taylor alpham reconstruction
_
,
ax
=
plt
.
subplots
(
figsize
=
(
22
,
10
))
ax
.
set_xlabel
(
'$t \ (us)$'
,
fontsize
=
20
)
ax
.
set_ylabel
(
'$[ms^{-1}]$'
,
fontsize
=
20
)
ax
.
plot
(
t
*
t_factor
,
alpham
[
0
,
:],
linewidth
=
2
,
c
=
mymap
(
rescale
(
charges
[
0
],
Qmin
,
Qmax
)),
label
=
'$
\\
overline{
\\
alpha_m(V_m)}$'
)
ax
.
plot
(
t
*
t_factor
,
Talpham
[
-
1
,
0
,
:],
'--'
,
linewidth
=
2
,
c
=
mymap
(
rescale
(
charges
[
0
],
Qmin
,
Qmax
)),
label
=
'$T_'
+
str
(
norder
)
+
'[
\\
alpha_m(
\\
overline{V_m})]$'
)
for
i
in
range
(
1
,
nQ
):
ax
.
plot
(
t
*
t_factor
,
alpham
[
i
,
:],
linewidth
=
2
,
c
=
mymap
(
rescale
(
charges
[
i
],
Qmin
,
Qmax
)))
ax
.
plot
(
t
*
t_factor
,
Talpham
[
-
1
,
i
,
:],
'--'
,
linewidth
=
2
,
c
=
mymap
(
rescale
(
charges
[
i
],
Qmin
,
Qmax
)))
cbar
=
plt
.
colorbar
(
sm_Q
)
cbar
.
ax
.
set_ylabel
(
'$Q \ (nC/cm^2)$'
,
fontsize
=
28
)
ax
.
legend
(
fontsize
=
20
)
plt
.
tight_layout
()
plt
.
show
()
Event Timeline
Log In to Comment