
An Inexact Augmented Lagrangian Framework
for Non-Convex Optimization with Nonlinear Constraints

Mehmet Fatih Sahin Armin Eftekhari Ahmet Alacaoglu

Fabian Latorre Volkan Cevher∗

LIONS, Ecole Polytechnique Fédérale de Lausanne, Switzerland

Abstract

We propose a practical inexact augmented Lagrangian method (iALM) for nonconvex
problems with nonlinear constrains. We characterize the total computational complexity of
our method subject to a verifiable geometric condition.

In particular, when a first-order solver is used for the inner iterates, we prove that iALM
finds a first-order stationary point with Õ(1/ε3) calls to the first-order oracle. Likewise, when
a second-order solver is used for the inner iterates, we prove that iALM finds a second-order
stationary point with Õ(1/ε5) calls to the second-order oracle. These complexity results match
the known theoretical results in the literature with a simple, implementable and versatile
algorithm.

We provide numerical evidence on large-scale machine learning problems, including the
Burer-Monteiro factorization of standard form Semidefinite Programming (SDP) relaxations,
for which we verify our geometric condition in specific cases. For these problems and under
suitable assumptions, our algorithm in fact achieves global optimality for the underlying convex
SDP.

1 Introduction
We study the nonconvex optimization problem{

min
x∈Rd

f(x) + g(x)

A(x) = b,
(1)

where f : Rd → R is possibly nonconvex and A : Rd → Rm is a nonlinear operator and b ∈ Rm.
For clarity of notation, we take b = 0 in the sequel, the extension to any b is trivial. We assume
that g : Rd → R is a proximal-friendly (but possibly nonsmooth) convex function.

A host of problems in computer science [35, 40], machine learning [44, 60], and signal pro-
cessing [58, 59] naturally fall under the template of (1), including max-cut, clustering, generalized
eigenvalue, and community detection.

To address these applications, this paper builds up on the vast literature on the classical
inexact augmented Lagrangian framework and proposes a simple, intuitive and easy-to-implement
algorithm which enjoys total complexity results for (1), under an interpretable geometric condition
detailed below. Before we elaborate on the results, let us first motivate (1) with an important
application to Semidefinite Programming (SDP):

Vignette: Burer-Monteiro splitting. A powerful convex relaxation for max-cut, clustering,
and several other applications we listed above is provided by the SDP{

min
X∈Sd×d

〈C,X〉

B(X) = b, X � 0,
(2)

∗mehmet.sahin@epfl.ch AE: Fatih please add all emails!

1

where C ∈ Rd×d and X is a positive semidefinite and symmetric d×d matrix, and B : Sd×d → Rm
is a linear operator. If the unique-games conjecture is true, SDPs achieve the best approximation
for the underlying discrete problem [56].

Since d is often large, many first- and second-order methods for solving such SDPs are immedi-
ately ruled out, not only due to their high computational complexity, but also due to their storage
requirements, which are O(d2).

A contemporary challenge in optimization is therefore to solve SDPs in small space and in
a scalable fashion. A recent algorithm, i.e., Homotopy Conditional Gradient Method (HCGM),
based on Linear Minimization Oracles (LMO), can address the template (2) in a small space
via sketching [69]; however, such LMO-based methods are extremely slow in obtaining accurate
solutions.

Alternatively, a powerful approach for solving (1), dating back to [16, 17], is the so-called
Burer-Monteiro (BR) factorization X = UU>, where U ∈ Rd×r and r is selected according to the
guidelines in [53, 2]. Even though the resulting factorized problem is nonconvex, it has been shown
that these bounds on the rank r, which are shown to be optimal [64], guarantee the removal of all
spurious local minima, under mild additional assumptions [15]. This factorization results in the
nonconvex problem {

min
U∈Rd×r

〈C,UU>〉

B(UU>) = b,
(3)

which can be written in the form of (1).
To solve (3), the inexact Augmented Lagrangian Method (iALM) is widely used [16, 17, 38],

due to its cheap per-iteration cost and also its empirical success in practice. Every (outer) iteration
of iALM calls a solver to inexactly solve an intermediate augmented Lagrangian subproblem to
near stationarity, and the user has freedom in choosing this solver, which could be a first-order
algorithm (say, proximal gradient descent [51]) or a second-order algorithm, such as BFGS [48].

We argue that, unlike its convex counterpart [45, 39, 66], the convergence rate and the com-
plexity of iALM for (3) are not well-understood, as detailed in Section 5. Indeed, addressing this
important theoretical gap is one of the key contribution of the present work.

Summary of contributions:
. Our framework is future-proof in the sense that we obtain the convergence rate of iALM for (1)
with an arbitrary solver for finding first- and second-order stationary points of each intermediate
subproblem.

. We investigate the use of different solvers for augmented Lagrangian subproblems and provide
overall iteration complexity bounds for finding first- and second-order stationary points of (1). Our
complexity bounds match the best theoretical complexity results in optimization, see Section 5.

. We propose a novel geometric condition that simplifies the algorithmic analysis of iALM. We
verify the condition for a few key problems described in Section 6.

Roadmap. Section 2 collects the technical tools and notation. We present iALM in Section 3
and obtain its convergence rate to first- and second-order stationary points in Section 4, alongside
their total iteration complexities. A comprehensive review of the literature, highlighting the key
distinctions of our framework, is presented in Section 5. Finally, Section 6 provides the numerical
evidence and comparisons with the state-of-the-art.

2 Preliminaries
Notation. We use the notation 〈·, ·〉 and ‖ · ‖ for the standard inner product and the norm on
Rd. For matrices, ‖ · ‖ and ‖ · ‖F denote the spectral and the Frobenius norms, respectively. For
a convex function g : Rd → R, the subdifferential set at x ∈ Rd is denoted by ∂g(x) and we will
occasionally use the notation ∂g(x)/β = {z/β : z ∈ ∂g(x)}. When presenting iteration complexity
results, we often use Õ(·) to suppress the logarithmic dependencies.

Throughout, the indicator function δX : Rd → R of a set X ⊂ Rd takes x to

δX (x) =

{
0 x ∈ X
∞ x /∈ X .

(4)

2

The distance function from a point x to X is denoted by dist(x,X) = minz∈X ‖x−z‖. For integers
k0 ≤ k1, we denote [k0 : k1] = {k0, . . . , k1}. For an operator A : Rd → Rm with components
{Ai}mi=1, we let DA(x) ∈ Rm×d denote the Jacobian of A, where the ith row of DA(x) is the
gradient vector ∇Ai(x) ∈ Rd.

Smoothness. We require f : Rd → R and A : Rd → Rm in (1) to be smooth, namely, there
exists λf , λA ≥ 0 such that

‖∇f(x)−∇f(x′)‖ ≤ λf‖x− x′‖,
‖DA(x)−DA(x′)‖ ≤ λA‖x− x′‖, (5)

for every x, x′ ∈ Rd.

Augmented Lagrangian Method (ALM). ALM is a classical algorithm, first appearing in [32,
55] and then extensively studied in [6]. Instead of (1), ALM proposes to solve the equivalent
problem

min
x

max
y
Lβ(x, y) + g(x), (6)

where, for β > 0, Lβ is the corresponding augmented Lagrangian, defined as

Lβ(x, y) := f(x) + 〈A(x), y〉+
β

2
‖A(x)‖2. (7)

The minimax formulation in (6) naturally suggests the following algorithm for solving (1): For
dual step sizes {σk}k, consider the iterates

xk+1 ∈ argmin
x

Lβ(x, yk) + g(x), (8)

yk+1 = yk + σkA(xk+1).

Unfortunately, updating xk+1 above requires solving the nonconvex problem (8) to optimality,
which is typically intractable. Instead, it is often easier to find an approximate first- or second-
order stationary point of (8).

Our key contribution is that, by gradually improving the stationarity precision and increasing
the penalty weight β above, we can reach a stationary point of the main problem in (1), as detailed
in Section 3.

Optimality conditions. First-order necessary optimality conditions for (1) are well-understood.
Indeed, x ∈ Rd is a first-order stationary point of (1) if there exists y ∈ Rm such that{

−∇f(x)−DA(x)>y ∈ ∂g(x)

A(x) = 0,
(9)

where DA(x) is the Jacobian of A at x. Recalling (7), we observe that (9) is equivalent to{
−∇xLβ(x, y) ∈ ∂g(x)

A(x) = 0,
(10)

which is in turn the necessary optimality condition for (6). Inspired by this, we say that x is an
(εf , β) first-order stationary point of (1) if{

dist(−∇xLβ(x, y), ∂g(x)) ≤ εf
‖A(x)‖ ≤ εf ,

(11)

where εf ≥ 0. In light of (11), a suitable metric for evaluating the stationarity of a pair (x, y) ∈
Rd × Rm is

dist (−∇xLβ(x, y), ∂g(x)) + ‖A(x)‖, (12)

3

which we will use as the first-order stopping criterion. As an example, for a convex set X ⊂ Rd,
suppose that g = δX is the indicator function on X . Let also TX (x) ⊆ Rd denote the tangent cone
to X at x, and with PTX (x) : Rd → Rd, we denote the orthogonal projection onto this tangent
cone. Then, for u ∈ Rd, it is not difficult to verify that

dist (u, ∂g(x)) = ‖PTX (x)(u)‖. (13)

When g = 0, a first-order stationary point x ∈ Rd of (1) is also second-order stationary if

λmin(∇xxLβ(x, y)) > 0, (14)

where ∇xxLβ is the Hessian with respect to x, and λmin(·) returns the smallest eigenvalue of its
argument. Analogously, x is an (εf , εs, β) second-order stationary point if, in addition to (11), it
holds that

λmin(∇xxLβ(x, y)) ≥ −εs, (15)

for εs > 0. Naturally, for second-order stationarity, we will use λmin(∇xxLβ(x, y)) as the stopping
criterion.

Smoothness lemma. This next result controls the smoothness of Lβ(·, y) for a fixed y. The
proof is standard but nevertheless included in Appendix C for completeness.

Lemma 2.1 (smoothness). For fixed y ∈ Rm and ρ, ρ′ ≥ 0, it holds that

‖∇xLβ(x, y)−∇xLβ(x′, y)‖ ≤ λβ‖x− x′‖, (16)

for every x, x′ ∈ {x′′ : ‖A(x′′)‖ ≤ ρ, ‖x′′‖ ≤ ρ′}, where

λβ ≤ λf +
√
mλA‖y‖+ (

√
mλAρ+ dλ′2A)β

=: λf +
√
mλA‖y‖+ λ′′(A, ρ, ρ′)β. (17)

Above, λf , λA were defined in (5) and

λ′A := max
‖x‖≤ρ′

‖DA(x)‖. (18)

3 Our optimization framework
To solve the equivalent formulation of (1), introduced in (6), we propose the inexact Augmented
Lagragnian Method (iALM), detailed in Algorithm 1.

At the kth iteration, Step 2 of Algorithm 1 calls a solver that finds an approximate stationary
point of the augmented Lagrangian Lβk

(·, yk) with the accuracy of εk+1; this accuracy gradually
increases throughout the iterations in a controlled fashion.

The increasing sequence of penalty weights {βk}k and the dual update (Steps 4 and 5 of
Algorithm 1) are responsible for continuously enforcing the constraints in (1). As we will see in the
convergence analysis, the particular choice of the dual step size σk in Algorithm 1 ensures that the
dual variable yk remains bounded; see [5] for a precedent in the ALM literature where a similar
choice for σk is considered.

Step 3 of Algorithm 1 removes pathological cases with divergent iterates. As an example,
suppose that g = δX in (1) is the indicator function for a bounded convex set X ⊂ Rd and take
ρ′ > maxx∈X ‖x‖. Then, for sufficiently large k, it is not difficult to verify that all the iterates of
Algorithm 1 automatically satisfy ‖xk‖ ≤ ρ′ without the need to execute Step 3.

4 Convergence Rate
In this section, we derive the convergence rate of Algorithm 1 for finding first-order and second-
order stationary points of (1), and present the corresponding total iteration complexity results.
All the proofs are deferred to Appendix A for the clarity.

Let us now turn to the details. Theorem 4.1 below, proved in Appendix A, characterizes the
convergence rate of Algorithm 1 for finding stationary points in terms of the number of outer
iterations.

4

Algorithm 1 Inexact AL for solving (1)
Input: ρ, ρ′, ρ′′ > 0, a non-decreasing, positive, unbounded sequence {βk}k≥1, stopping thresh-
olds τf and τs.
Initialization: x1 ∈ Rd such that ‖A(x1)‖ ≤ ρ and ‖x1‖ ≤ ρ′, y0 ∈ Rm, σ1.
for k = 1, 2, . . . do
1. (Update tolerance) εk+1 = 1/βk.

2. (Inexact primal solution) Obtain xk+1 ∈ Rd such that

dist(−∇xLβk
(xk+1, yk), ∂g(xk+1)) ≤ εk+1

for first-order stationarity and, in addition,

λmin(∇xxLβk
(xk+1, yk)) ≥ −εk+1

for second-order-stationarity.

3. (Control) If necessary, project xk+1 to ensure that ‖xk+1‖ ≤ ρ′.

4. (Update dual step size)

σk+1 = σ1 min
(‖A(x1)‖ log2 2

‖A(xk+1)‖(k + 1) log2(k + 2)
, 1
)
.

5. (Dual ascent) yk+1 = yk + σk+1A(xk+1).

6. (Stopping criterion) If

dist(−∇xLβk
(xk+1), ∂g(xk+1)) + σk+1‖A(xk+1)‖ ≤ τf ,

for first-order stationarity and if also λmin(∇xxLβk
(xk+1, yk)) ≥ −τs for second-order sta-

tionarity, then quit and return xk+1 as an (approximate) stationary point of (1).
end for

Theorem 4.1. (convergence rate) Suppose that f and A are smooth in the sense specified
in (5). For ρ′ > 0, let

λ′f = max
‖x‖≤ρ′

‖∇f(x)‖, λ′A = max
‖x‖≤ρ′

‖DA(x)‖, (19)

be the (restricted) Lipschitz constants of f and A, respectively. For sufficiently large integers
k0 ≤ k1, consider the interval K = [k0 : k1], and let {xk}k∈K be the output sequence of Algorithm 1
on the interval K. For ν > 0, assume that

ν‖A(xk)‖ ≤ dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)
, (20)

for every k ∈ K. We consider two cases:

• If a first-order solver is used in Step 2, then xk is an (εk,f , βk) first-order stationary point of (1)
with

εk,f =
1

βk−1

(
2(λ′f + λ′Aymax)(1 + λ′Aσk)

ν
+ 1

)
=:

Q(f, g, A, σ1)

βk−1
, (21)

for every k ∈ K, where the expression for ymax = ymax(x1, y0, σ1) is given in (48).

• If a second-order solver is used in Step 2, then xk is an (εk,f , εk,s, βk) second-order stationary

5

𝒳

null 𝐴

Figure 1: Solving (1) can be particularly difficult, even when it is a convex program. We present
a pathological geometry where the Slater’s condition does not apply. See the first remark after
Theorem 4.1 for more details.

point of (1) with εk,s specified above and with

εk,s = εk−1 + σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1

=
ν + σk

√
mλA2λ′f + 2λ′Aymax

νβk−1
=:

Q′

βk−1
. (22)

Loosely speaking, Theorem 4.1 states that Algorithm 1 converges to a (first- or second-) order
stationary point of (1) at the rate of 1/βk. A few remarks are in order.

Regularity. The key condition in Theorem 4.1 is (20) which, broadly speaking, controls the
geometry of the problemuujq.

As the penalty weight βk grows, the primal solver in Step 2 places an increasing emphasis
on reducing the feasibility gap and (20) formhddddhdalizes this intuition. In contrast to most
conditions in the nonconvex optimization literature, such as [28] AE: Fatih, please cite here
all papers with nonconvex salter conditions, our condition in (20) appears to be easier to
verify, as we see in Section 6.

We now argue that such a condition is necessary for controlling the feasibility gap of (1) and
ensuring the success of Algorithm 1. For instance, consider the case where f = 0 and g = δX ,
where X is a convex set, A is a linear operator. In this case, solving (1) finds a point in X ∩null(A),
where the subspace null(A) = {x ∈ Rd : A(x) = 0} ⊂ Rd is the null space of A. Here, (1) is convex
and the Slater’s condition requires that

relint(X) ∩ null(A) 6= ∅. (23)

In general, the Slater’s condition plays a key role in convex optimization as a sufficient condition
for strong duality and, as a result, guarantees the success of a variety of primal-dual algorithms
for linearly-constrained convex programs [3]. Intuitively, the Slater’s condition here removes any
pathological cases by ensuring that the subspace null(A) is not tangent to X , see Figure 1. In such
pathological cases, solving (1), namely, finding a point in X ∩null(A), can be particularly difficult.
For instance, the alternating projection algorithm (which iteratively projects onto X and null(A))
has arbitrarily slow convergence, see Figure 1.

Computational complexity. Theorem 4.1 allows us to specify the number of iterations that
Algorithm 1 requires to reach a near-stationary point of (1) with a prescribed precision and, in
particular, specifies the number of calls made to the solver in its Step 2. In this sense, Theorem 4.1
does not fully capture the computational complexity of Algorithm 1, as it does not take into
account the computational cost of the solver in its Step 2.

To understand the total complexity of Algorithm 1, we consider two scenarios in the following.
In the first scenario, we take the solver in Step 2 to be the Accelerated Proximal Gradient Method
(APGM), a well-known first-order algorithm [30]. In the second scenario, we will use the second-
order trust region method developed in [19].

6

4.1 First-Order Optimality
Let us first consider the first-order optimality case where the solver in Step 2 is APGM [30]. APGM
makes use of ∇xLβ(x, y), the proximal operator proxg, and the classical Nesterov’s acceleration [47]
to obtain first-order stationarity guarantees for solving the subproblem (8). Suppose that g = δX
is the indicator function of a bounded convex set X ⊂ Rd, and let

xmax = max
x∈X
‖x‖, (24)

be the radius of a ball centered at the origin that includes X . Then, adapting the results in [30]
to our setup, APGM reaches xk in Step 2 of Algorithm 1 after

O

(
λ2
βk
x2

max

εk+1

)
(25)

(inner) iterations, where λβk
denotes the Lipschitz constant of ∇xLβk

(x, y), bounded in (17). We
note that, for simplicity, we use a looser bound in (25) than the original in [30]. Using (25), we
derive the following corollary, describing the total computational complexity of Algorithm 1 in
terms of the calls to the first-order oracle in APGM.

Corollary 4.2. For b > 1, let βk = bk for every k. If we use APGM from [30] for Step 2 of
Algorithm 1, the algorithm finds an (εf , βk) first-order stationary point, see (11), after T calls to
the first-order oracle, where

T = O
(
Q3x2

max

ε3
logb

(
Q

ε

))
= Õ

(
Q3x2

max

ε3

)
. (26)

For Algorithm 1 to reach a near-stationary point with an accuracy of εf in the sense of (11) and with
the lowest computational cost, we therefore need to perform only one iteration of Algorithm 1, with
β1 specified as a function of εf by (21) in Theorem 4.1. In general, however, the constants in (21) are
unknown and this approach is intractable. Instead, the homotopy approach taken by Algorithm 1
ensures achieving the desired accuracy by gradually increasing the penalty weight. This homotopy
approach increases the computational cost of Algorithm 1 only by a factor logarithmic in the εf ,
as detailed in the proof of Corollary 4.2.

4.2 Second-Order Optimality
Let us now consider the second-order optimality case where the solver in Step 2 is the the trust
region method developed in [19]. The trust region method minimizes quadratic approximation
of the function within a dynamically updated trust-region radius. The particular second-order
trust region method that we consider in this section makes use of Hessian (or an approximation of
Hessian) of the augmented Lagrangian in addition to first order oracles.

As shown in [49], finding approximate second-order stationary points of convex-constrained
problems is in general NP-hard. For this reason, we focus in this section on the special case of (1)
with g = 0.

Let us compute the total computational complexity of Algorithm 1 with the trust region method
in Step 2, in terms of the number of calls made to the second-order oracle. By adapting the result
in [19] to our setup, we find that the number of (inner) iterations required in Step 2 of Algorithm 1
to produce xk+1 is

O

(
λ2
βk,H

(Lβk
(x1, y)−minx Lβk

(x, y))

ε3k

)
, (27)

where λβ,H is the Lipschitz constant of the Hessian of the augmented Lagrangian, which is of the
order of β, as can be proven similar to Lemma 2.1 and x1 is the initial iterate of the given outer
loop. In [19], the term Lβ(x1, y) −minx Lβ(x, y) is bounded by a constant independent of ε. We
assume a uniform bound for this quantity for all βk, instead of for one value of βk as in [19]. Using
(27) and Theorem 4.1, we arrive at the following:

Corollary 4.3. For b > 1, let βk = bk for every k. We assume that

Lβ(x1, y)−min
x
Lβ(x, y) ≤ Lu, ∀β. (28)

7

If we use the trust region method from [19] for Step 2 of Algorithm 1, the algorithm finds an
ε-second-order stationary point of (1) in T calls to the second-order oracle where

T ≤ O
(
LuQ

′5

ε5
logb

(
Q′

ε

))
= Õ

(
LuQ

′5

ε5

)
. (29)

Before closing this section, we note that the remark after Corollary 4.2 applies here as well.

5 Related works
ALM has a long history in the optimization literature, dating back to [32, 55]. In the special case
of (1) with a convex function f and a linear operator A, standard, inexact and linearized versions
of ALM have been extensively studied [39, 45, 63, 66].

Classical works on ALM focused on the general template of (1) with nonconvex f and nonlinear
A, with arguably stronger assumptions and required exact solutions to the subproblems of the
form (8), which appear in Step 2 of Algorithm 1, see for instance [6].

A similar analysis was conducted in [26] for the general template of (1). The authors considered
inexact ALM and proved convergence rates for the outer iterates, under specific assumptions on
the initialization of the dual variable. However, unlike our results, the authors did not analyze how
to solve the subproblems inexactly and they did not provide total complexity results and verifiable
conditions, see Section 6.

Problem (1) is also studied in [9] and [20] for first-order and second-order stationarity, re-
spectively, with explicit iteration complexity analysis and similar assumptions to us. As we have
mentioned in Section 4, our iteration complexity results matches these theoretical algorithms with
a far simpler algorithm and a straightforward analysis. In addition, these algorithms require set-
ting final accuracies in advance, since they utilize this information in the algorithm. In contrast
to [9, 20], Algorithm 1 does not set the final accuracy a priori.

[21] also considers the same template (1) for first-order stationarity with a penalty-type method
instead of ALM. Even though the authors show O(1/ε2) complexity, this result is obtained by
assuming that the penalty parameter remains bounded. We note that such an assumption can also
be used to match our complexity results.

[11] studies the general template (1) with specific assumptions involving local error bound
conditions for (1). These conditions are studied in detail in [10], but their validity for general
SDPs in (2) has never been established. This work also lacks the total iteration complexity analysis
presented here.

Another work [24] focused on solving (1) by adapting the primal-dual method of Chambolle
and Pock [22]. The authors proved the convergence of the method and provided convergence rate
by imposing error bound conditions on the objective function that do not hold for standard SDPs.

[16, 17] is the first work that proposes the splitting X = UU> for solving SDPs of the form (2).
Following these works, the literature on Burer-Monteiro (BM) splitting for the large part focused on
using ALM for solving the reformulated problem (3). However, this approach has a few drawbacks:
First, it requires exact solutions in Step 2 of Algorithm 1 in theory, which in practice is replaced with
inexact solutions. Second, their results only establish convergence without providing the rates. In
this sense, our work provides a theoretical understanding of the BM splitting with inexact solutions
to Step 2 of Algorithm 1 and complete iteration complexities.

[8, 52] are among the earliest efforts to show convergence rates for BM splitting, focusing on
the special case of SDPs without any linear constraints. For these specific problems, they prove
the convergence of gradient descent to global optima with convergence rates, assuming favorable
initialization. These results, however, do not apply to general SDPs of the form (2) where the
difficulty arises due to the linear constraints.

[7] focused on the quadratic penalty formulation of (1), namely,

min
X�0
〈C,X〉+

µ

2
‖B(X)− b‖2, (30)

which after BM factorization becomes

min
U∈Rd×r

〈C,UU>〉+
µ

2
‖B(UU>)− b‖2, (31)

8

for which they study the optimality of the second-order stationary points. These results are for
establishing a connection between the stationary points of (31) and global optima of (30). In
contrast, we focus on the relation of the stationary points of (6) to the constrained problem (1).

Another popular method for solving SDPs are due to [14, 13, 15], focusing on the case where
the constraints in (1) can be written as a Riemannian manifold after BM splitting. In this case, the
authors apply the Riemannian gradient descent and Riemannian trust region methods for obtaining
first- and second-order stationary points, respectively. They obtain O(1/ε2) complexity for finding
first-order stationary points and O(1/ε3) complexity for finding second-order stationary points.

While these complexities appear better than ours, the smooth manifold requirement in these
works is indeed restrictive. In particular, this requirement holds for max-cut and generalized
eigenvalue problems, but it is not satisfied for other important SDPs such as quadratic programming
(QAP), optimal power flow and clustering with general affine constraints. In addition, as noted
in [13], per iteration cost of their method for max-cut problem is an astronomical O(d6).

Lastly, there also exists a line of work for solving SDPs in their original convex formulation, in a
storage efficient way [46, 68, 69]. These works have global optimality guarantees by their virtue of
directly solving the convex formulation. On the downside, these works require the use of eigenvalue
routines and exhibit significantly slower convergence as compared to nonconvex approaches [34].

6 Numerical evidence
We first begin with a caveat: It is known that quasi-Newton methods, such as BFGS and lBFGS,
might not converge for non-convex problems [25, 42]. For this reason, we have used the trust region
method as the second-order solver in our analysis in Section 4, which is well-studied for non-convex
problems [19].

Empirically, however, BFGS and lBGFS are extremely successful and we have also opted for
those solvers in this section since the subroutine does not affect Theorem 4.1 as long as the subsolver
can perform in practice.

6.1 k-Means Clustering
Given data points {zi}ni=1, the entries of the corresponding Euclidean distance matrix D ∈ Rnxn

are Di,j = ‖zi − zj‖2. Clustering is then the problem of finding a co-association matrix Y ∈ Rn×n
such that Yij = 1 if points zi and zj are within the same cluster and Yij = 0 otherwise. In [54],
the authors provide a SDP relaxation of the clustering problem, specified as{

min
Y ∈Rnxn

tr(DY)

Y 1 = 1, tr(Y) = k, Y � 0, Y ≥ 0,
(32)

where k is the number of clusters and Y is both positive semidefinite and has nonnegative entries.
Standard SDP solvers do not scale well with the number of data points n, since they often require
projection onto the semidefinite cone with the complexity of O(n3). We instead use the Burer-
Monteiro splitting, sacrificing convexity to reduce the computational complexity. More specifically,
we solve the program {

min
V ∈Rnxr

tr(DV V >)

V V >1 = 1, ‖V ‖2F ≤ k, V ≥ 0,
(33)

where 1 ∈ Rn is the vector of all ones. Note that Y ≥ 0 in (32) is replaced above by the much
stronger but easier to enforce constraint V ≥ 0 constraint above, see [38] for the reasoning behind
this relaxation. Now, we can cast (33) as an instance of (1). Indeed, for every i ≤ n, let xi ∈ Rr
denote the ith row of V . We next form x ∈ Rd with d = nr by expanding the factorized variable
V , namely,

x = [x>1 , · · · , x>n]> ∈ Rd,

and then set

f(x) =

n∑
i,j=1

Di,j 〈xi, xj〉 , g = δC ,

9

10
0

10
1

10
2

10
-10

10
-5

10
0

10
1

10
2

10
3

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 2: Convergence of different algorithms for k-Means clustering with fashion MNIST dataset.
The solution rank for the template (32) is known and it is equal to number of clusters k (Theorem
1. [38]). As discussed in [62], setting rank r > k leads more accurate reconstruction in expense of
speed. Therefore, we set the rank to 20.

A(x) = [x>1

n∑
j=1

xj − 1, · · · , x>n
n∑
j=1

xj − 1]>, (34)

where C is the intersection of the positive orthant in Rd with the Euclidean ball of radius
√
k. In

Appendix D, we somewhat informally verify that Theorem 4.1 applies to (1) with f, g, A specified
above.

In our simulations, we use two different solvers for Step 2 of Algorithm 1, namely, APGM and
lBFGS. APGM is a solver for non-convex problems of the form (8) with convergence guarantees
to first-order stationarity, as discussed in Section 4. lBFGS is a limited-memory version of BFGS
algorithm in [27] that approximately leverages the second-order information of the problem. We
compare our approach against the following convex methods:

. HCGM: Homotopy-based Conditional Gradient Method in[69] which directly solves (32).

. SDPNAL+: A second-order augmented Lagrangian method for solving SDP’s with nonneg-
ativity constraints [67].

As for the dataset, our experimental setup is similar to that described by [43]. We use the
publicly-available fashion-MNIST data in [65], which is released as a possible replacement for the
MNIST handwritten digits. Each data point is a 28 × 28 gray-scale image, associated with a
label from ten classes, labeled from 0 to 9. First, we extract the meaningful features from this
dataset using a simple two-layer neural network with a sigmoid activation function. Then, we
apply this neural network to 1000 test samples from the same dataset, which gives us a vector
of length 10 for each data point, where each entry represents the posterior probability for each
class. Then, we form the `2 distance matrix D from these probability vectors. The results are
depicted in Figure 2. We implemented 3 algorithms on MATLAB and used the software package
for SDPNAL+ which contains mex files. Convergence of the nonconvex approach will be much
faster once mex implementation is used.

6.2 Generalized eigenvalue problem
Generalized eigenvalue problem has extensive applications in machine learning, statistics and data
analysis [29]. The well-known nonconvex formulation of the problem is [15].

{
min
x∈Rn

x>Cx

x>Bx = 1,
(35)

where B,C ∈ Rn×n are symmetric matrices and B is positive definite, i.e. B � 0. The generalized
eigenvector computation is equivalent to performing principal component analysis (PCA) of C in
the norm B. Moreover, it is also equivalent to computing the top eigenvector of symmetric matrix
S = B−1/2CB1−2 and multiplying the resulting vector by B−1/2. However, for sufficiently large

10

n, computing B−1/2 is extremely expensive. The natural convex sdp relaxation for (35) involves
lifting Y = xx> and removes the non-convex rank(Y) = 1 constraint,

{
min

Y ∈Rn×n
tr(CY)

tr(BY) = 1, X � 0.
(36)

Here, we solve (35) because it directly fits into our template with,

f(x) =x>Cx, g(x) = 0

A(x) =x>Bx− 1. (37)

We compare our approach against 3 different methods. Manifold based Riemannian gradient
descent and Riemannian trust region methods in[13] and generalized eigenvector via linear system
solver (abbrevated as. GenELin) in [29]. We have used Manopt software package in [12] for the
manifold based methods. For GenELin, we have utilized Matlab’s backslash operator as the linear
solver. The results are compiled in Figure 3.

We synthetically generate the real and symmetric matrices B and C with n = 103. The main
assumption in (35) is that B is positive definite. Therefore, we generated B with all positive
repeated eigenvalues in all the experiments. We analyze different eigenvalue structures for C.
Second and forth row of Figure 3 depicts corresponding eigenvalue structures for B and C. λCi
and λCi denotes ith largest eigenvalue in magnitude for C and B, respectively.

Our augmented Lagrangian based method for the generalized eigenvalue problem outperforms
the first order Riemannian gradient descent and GenELin in most of the cases. It is promising to
see that such a general method can perform well without exploiting any structural property in the
constraint set as manifold based methods does.

6.3 Basis Pursuit
Basis Pursuit (BP) finds sparsest solutions of an under-determined system of linear equations,
namely, {

minz ‖z‖1
Bz = b,

(38)

where B ∈ Rn×d and b ∈ Rn. BP has found many applications in machine learning, statistics and
signal processing [23, 18, 1]. A huge number of primal-dual convex optimization algorithms are
proposed to solve BP, including, but not limited to [63, 22]. There also exists many line of works
[4] to handle sparse regression problem via regularization with `1 norm.

Here, we take a different approach and cast (38) as an instance of (1). Note that any z ∈ Rd
can be decomposed as z = z+ − z−, where z+, z− ∈ Rd are the positive and negative parts of
z, respectively. Then consider the change of variables z+ = u◦21 and z− = u◦22 ∈ Rd, where ◦
denotes element-wise power. Next, we concatenate u1 and u2 as x := [u>1 , u

>
2]> ∈ R2d and define

B := [B,−B] ∈ Rn×2d. Then, (38) is equivalent to (1) with

f(x) =‖x‖22, g(x) = 0

A(x) =Bx◦2 − b. (39)

In Appendix F, we verify with minimal detail that Theorem 4.1 indeed applies to (1) with the
above f,A.

We draw the entries of B independently from a zero-mean and unit-variance Gaussian dis-
tribution. For a fixed sparsity level k, the support of z∗ ∈ Rd and its nonzero amplitudes are
also drawn from the standard Gaussian distribution. Then the measurement vector is created as
b = Bz + ε, where ε is the noise vector with entries drawn independently from the zero-mean
Gaussian distribution with variance σ2 = 10−6.

Figure 4 compiles our results for the proposed relaxation. It is, indeed, interesting to see that
these type of non-convex relaxations gives the solution of convex one and first order methods
succeed.

11

(i) C : Gaussian iid (ii) C : Polynomial decay (iii) C : Exponential decay

10
-1

10
0

10
1

10
-10

10
-5

10
0

10
-1

10
0

10
1

10
-10

10
-5

10
0

10
-1

10
0

10
1

10
-10

10
-5

10
0

0 200 400 600 800 1000

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000

0

0.02

0.04

0.06

0.08

0.1

0.12

(iv) (v) (vi)

10
-1

10
0

10
1

10
-15

10
-10

10
-5

10
0

10
-1

10
0

10
1

10
-10

10
-5

10
0

10
-1

10
0

10
1

10
2

10
-10

10
-5

10
0

0 200 400 600 800 1000

-0.05

0

0.05

0.1

0 200 400 600 800 1000

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 200 400 600 800 1000

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Figure 3: (Top) Objective convergence for calculating top generalized eigenvalue and eigenvector of
B and C. (Bottom) Eigenvalue structure of the matrices. For (i),(ii) and (iii), C is positive semidef-
inite; for (iv), (v) and (vi), C contains negative eigenvalues. [(i): Generated by taking symmetric
part of iid Gaussian matrix. (ii): Generated by randomly rotating diag(1−p, 2−p, · · · , 1000−p)(p =
1). (iii): Generated by randomly rotating diag(10−p, 10−2p, · · · , 10−1000p)(p = 0.0025).]

10
1

10
2

10
3

10
4

10
-8

10
-4

10
0

10
1

10
2

10
3

10
4

10
-8

10
-4

10
0

Figure 4: Convergence with different subsolvers for the aforementioned non-convex relaxation.

Discussion: The true potential of our reformulation is in dealing with more structured norms
rather than `1, where computing the proximal operator is often intractable. One such case is the

12

latent group lasso norm [50], defined as

‖z‖Ω =

I∑
i=1

‖zΩi
‖,

where {Ωi}Ii=1 are (not necessarily disjoint) index sets of {1, · · · , d}. Although not studied here, we
believe that the non-convex framework presented in this paper can serve to solve more complicated
problems, such as the latent group lasso. We leave this research direction for future work.

6.4 Adversarial Denoising with GANs
Projection onto the range of a neural network G : Rs → Rd has been considered by [57, 33] as a
defense mechanism against adversarial examples [61]. In their settings, samples are denoised by
projecting on the range of a pre-trained generator, from either the GAN [31] or VAE framework
[37], before being fed to a classifier. Even though the adversarial noise introduced is typically
bounded in `∞ norm [41], the projection is performed in the `2 metric. We instead propose to
directly project using the `∞ norm that limits the attacker, i.e. we solve the program{

minx,z ‖x− x\‖∞
G(z) = x,

(40)

with our proposed algorithm (1) (AL). On the optimization side, projections are usually performed
by solving, for a particular choice of norm ‖ · ‖, the non-convex program

min
z
‖G(z)− x\‖ (41)

using off-the-shelf optimizers like gradient descent (GD) or ADAM [36]. Indeed, we assign equal
computational budget to ADAM and GD for solving (41) with the `∞ norm, and to our algorithm
(AL) for solving (40). We choose a test image in the range of the generator G by sampling z at
random and setting x\ = G(z) + η for η a random noise bounded in `∞ norm. For each algorithm
we allow two random restarts.

Results and discussion. For a noise level ‖η‖ ≤ 0.1 we plot the objective function value
across iterations (for our algorithm we plot the value ‖G(zt)− x\‖∞). The MNIST images we use
are normalized in the range [0, 1]. We plot the mean value across 6 different random images. We
observe that our algorithm AL is the only one capable of consistently decreasing the value of the
objective function, while ADAM only does so slightly. Even after extensive tuning of the GD step
size, we could not observe any improvement in the objective value.

Figure 5: `∞ measurement error vs iterations

Acknowledgements
This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement no 725594 - time-
data), and was supported by the Swiss National Science Foundation (SNSF) under grant number
200021_178865 / 1.

13

References
[1] Sanjeev Arora, Mikhail Khodak, Nikunj Saunshi, and Kiran Vodrahalli. A compressed sensing

view of unsupervised text embeddings, bag-of-n-grams, and lstms. 2018.

[2] Alexander I. Barvinok. Problems of distance geometry and convex properties of quadratic
maps. Discrete & Computational Geometry, 13(2):189–202, 1995.

[3] Heinz H Bauschke, Patrick L Combettes, et al. Convex analysis and monotone operator theory
in Hilbert spaces, volume 408. Springer, 2011.

[4] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[5] Dimitri P Bertsekas. On penalty and multiplier methods for constrained minimization. SIAM
Journal on Control and Optimization, 14(2):216–235, 1976.

[6] Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic
press, 2014.

[7] Srinadh Bhojanapalli, Nicolas Boumal, Prateek Jain, and Praneeth Netrapalli. Smoothed
analysis for low-rank solutions to semidefinite programs in quadratic penalty form. arXiv
preprint arXiv:1803.00186, 2018.

[8] Srinadh Bhojanapalli, Anastasios Kyrillidis, and Sujay Sanghavi. Dropping convexity for
faster semi-definite optimization. In Conference on Learning Theory, pages 530–582, 2016.

[9] Ernesto G Birgin, JL Gardenghi, José Mario Martinez, SA Santos, and Ph L Toint. Evaluation
complexity for nonlinear constrained optimization using unscaled kkt conditions and high-
order models. SIAM Journal on Optimization, 26(2):951–967, 2016.

[10] Jérôme Bolte, Trong Phong Nguyen, Juan Peypouquet, and Bruce W Suter. From error
bounds to the complexity of first-order descent methods for convex functions. Mathematical
Programming, 165(2):471–507, 2017.

[11] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Nonconvex lagrangian-based optimization:
monitoring schemes and global convergence. Mathematics of Operations Research, 2018.

[12] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox for opti-
mization on manifolds. Journal of Machine Learning Research, 15:1455–1459, 2014.

[13] Nicolas Boumal, P-A Absil, and Coralia Cartis. Global rates of convergence for nonconvex
optimization on manifolds. arXiv preprint arXiv:1605.08101, 2016.

[14] Nicolas Boumal, Bamdev Mishra, P-A Absil, and Rodolphe Sepulchre. Manopt, a matlab tool-
box for optimization on manifolds. The Journal of Machine Learning Research, 15(1):1455–
1459, 2014.

[15] Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira. The non-convex burer-monteiro ap-
proach works on smooth semidefinite programs. In Advances in Neural Information Processing
Systems, pages 2757–2765, 2016.

[16] Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization. Mathematical Programming, 95(2):329–357,
2003.

[17] Samuel Burer and Renato DC Monteiro. Local minima and convergence in low-rank semidef-
inite programming. Mathematical Programming, 103(3):427–444, 2005.

[18] Emmanuel J Candès and Michael B Wakin. An introduction to compressive sampling. IEEE
signal processing magazine, 25(2):21–30, 2008.

[19] Coralia Cartis, Nicholas IM Gould, and Ph L Toint. Complexity bounds for second-order
optimality in unconstrained optimization. Journal of Complexity, 28(1):93–108, 2012.

14

[20] Coralia Cartis, Nicholas IM Gould, and Ph L Toint. Optimality of orders one to three and
beyond: characterization and evaluation complexity in constrained nonconvex optimization.
Journal of Complexity, 2018.

[21] Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. On the evaluation complexity
of composite function minimization with applications to nonconvex nonlinear programming.
SIAM Journal on Optimization, 21(4):1721–1739, 2011.

[22] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex prob-
lems with applications to imaging. Journal of mathematical imaging and vision, 40(1):120–145,
2011.

[23] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition by
basis pursuit. SIAM review, 43(1):129–159, 2001.

[24] Christian Clason, Stanislav Mazurenko, and Tuomo Valkonen. Acceleration and global
convergence of a first-order primal–dual method for nonconvex problems. arXiv preprint
arXiv:1802.03347, 2018.

[25] Yu-Hong Dai. Convergence properties of the bfgs algoritm. SIAM Journal on Optimization,
13(3):693–701, 2002.

[26] Damián Fernández and Mikhail V Solodov. Local convergence of exact and inexact augmented
lagrangian methods under the second-order sufficient optimality condition. SIAM Journal on
Optimization, 22(2):384–407, 2012.

[27] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[28] Fabián Flores-Bazán, Fernando Flores-Bazán, and Cristián Vera. A complete characteriza-
tion of strong duality in nonconvex optimization with a single constraint. Journal of Global
Optimization, 53(2):185–201, 2012.

[29] Rong Ge, Chi Jin, Praneeth Netrapalli, Aaron Sidford, et al. Efficient algorithms for large-
scale generalized eigenvector computation and canonical correlation analysis. In International
Conference on Machine Learning, pages 2741–2750, 2016.

[30] Saeed Ghadimi and Guanghui Lan. Accelerated gradient methods for nonconvex nonlinear
and stochastic programming. Mathematical Programming, 156(1-2):59–99, 2016.

[31] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative Adversarial Networks. ArXiv e-prints, June 2014.

[32] Magnus R Hestenes. Multiplier and gradient methods. Journal of optimization theory and
applications, 4(5):303–320, 1969.

[33] Andrew Ilyas, Ajil Jalal, Eirini Asteri, Constantinos Daskalakis, and Alexandros G. Dimakis.
The Robust Manifold Defense: Adversarial Training using Generative Models. arXiv e-prints,
page arXiv:1712.09196, December 2017.

[34] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML
(1), pages 427–435, 2013.

[35] Subhash Khot and Assaf Naor. Grothendieck-type inequalities in combinatorial optimization.
arXiv preprint arXiv:1108.2464, 2011.

[36] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv
e-prints, page arXiv:1412.6980, December 2014.

[37] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv e-prints, page
arXiv:1312.6114, December 2013.

[38] Brian Kulis, Arun C Surendran, and John C Platt. Fast low-rank semidefinite programming
for embedding and clustering. In Artificial Intelligence and Statistics, pages 235–242, 2007.

15

[39] Guanghui Lan and Renato DC Monteiro. Iteration-complexity of first-order augmented la-
grangian methods for convex programming. Mathematical Programming, 155(1-2):511–547,
2016.

[40] László Lovász. Semidefinite programs and combinatorial optimization. In Recent advances in
algorithms and combinatorics, pages 137–194. Springer, 2003.

[41] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In International Con-
ference on Learning Representations, 2018.

[42] Walter F Mascarenhas. The bfgs method with exact line searches fails for non-convex objective
functions. Mathematical Programming, 99(1):49–61, 2004.

[43] Dustin G Mixon, Soledad Villar, and Rachel Ward. Clustering subgaussian mixtures by
semidefinite programming. arXiv preprint arXiv:1602.06612, 2016.

[44] Elchanan Mossel, Joe Neeman, and Allan Sly. Consistency thresholds for the planted bisection
model. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 69–75. ACM, 2015.

[45] Valentin Nedelcu, Ion Necoara, and Quoc Tran-Dinh. Computational complexity of inexact
gradient augmented lagrangian methods: application to constrained mpc. SIAM Journal on
Control and Optimization, 52(5):3109–3134, 2014.

[46] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical pro-
gramming, 120(1):221–259, 2009.

[47] Yurii E Nesterov. A method for solving the convex programming problem with convergence
rate o (1/kˆ 2). In Dokl. Akad. Nauk SSSR, volume 269, pages 543–547, 1983.

[48] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer New York, 2006.

[49] Maher Nouiehed, Jason D Lee, and Meisam Razaviyayn. Convergence to second-order sta-
tionarity for constrained non-convex optimization. arXiv preprint arXiv:1810.02024, 2018.

[50] Guillaume Obozinski, Laurent Jacob, and Jean-Philippe Vert. Group lasso with overlaps: the
latent group lasso approach. arXiv preprint arXiv:1110.0413, 2011.

[51] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and Trends R© in Opti-
mization, 1(3):127–239, 2014.

[52] Dohyung Park, Anastasios Kyrillidis, Srinadh Bhojanapalli, Constantine Caramanis, and Su-
jay Sanghavi. Provable burer-monteiro factorization for a class of norm-constrained matrix
problems. arXiv preprint arXiv:1606.01316, 2016.

[53] Gábor Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity
of optimal eigenvalues. Mathematics of operations research, 23(2):339–358, 1998.

[54] J. Peng and Y. Wei. Approximating K–means–type clustering via semidefinite programming.
SIAM J. Optim., 18(1):186–205, 2007.

[55] Michael JD Powell. A method for nonlinear constraints in minimization problems. Optimiza-
tion, pages 283–298, 1969.

[56] Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In
Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 245–254.
ACM, 2008.

[57] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-GAN: Protecting classifiers
against adversarial attacks using generative models. In International Conference on Learning
Representations, 2018.

16

[58] Amit Singer. Angular synchronization by eigenvectors and semidefinite programming. Applied
and computational harmonic analysis, 30(1):20, 2011.

[59] Amit Singer and Yoel Shkolnisky. Three-dimensional structure determination from common
lines in cryo-em by eigenvectors and semidefinite programming. SIAM journal on imaging
sciences, 4(2):543–572, 2011.

[60] Le Song, Alex Smola, Arthur Gretton, and Karsten M Borgwardt. A dependence maximization
view of clustering. In Proceedings of the 24th international conference on Machine learning,
pages 815–822. ACM, 2007.

[61] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv e-prints, page
arXiv:1312.6199, December 2013.

[62] Mariano Tepper, Anirvan M Sengupta, and Dmitri Chklovskii. Clustering is semidefinitely
not that hard: Nonnegative sdp for manifold disentangling. Journal of Machine Learning
Research, 19(82), 2018.

[63] Quoc Tran-Dinh, Ahmet Alacaoglu, Olivier Fercoq, and Volkan Cevher. An adaptive primal-
dual framework for nonsmooth convex minimization. arXiv preprint arXiv:1808.04648, 2018.

[64] Irène Waldspurger and Alden Waters. Rank optimality for the burer-monteiro factorization.
arXiv preprint arXiv:1812.03046, 2018.

[65] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

[66] Yangyang Xu. Iteration complexity of inexact augmented lagrangian methods for constrained
convex programming. arXiv preprint arXiv:1711.05812v2, 2017.

[67] Liuqin Yang, Defeng Sun, and Kim-Chuan Toh. Sdpnal+: a majorized semismooth newton-
cg augmented lagrangian method for semidefinite programming with nonnegative constraints.
Mathematical Programming Computation, 7(3):331–366, 2015.

[68] Alp Yurtsever, Quoc Tran Dinh, and Volkan Cevher. A universal primal-dual convex opti-
mization framework. In Advances in Neural Information Processing Systems, pages 3150–3158,
2015.

[69] Alp Yurtsever, Olivier Fercoq, Francesco Locatello, and Volkan Cevher. A conditional gradient
framework for composite convex minimization with applications to semidefinite programming.
arXiv preprint arXiv:1804.08544, 2018.

17

A Proof of Theorem 4.1
For every k ≥ 2, recall from (7) and Step 2 of Algorithm 1 that xk satisfies

dist(−∇f(xk)−DA(xk)>yk−1

− βk−1DA(xk)>A(xk), ∂g(xk))

= dist(−∇xLβk−1
(xk, yk−1), ∂g(xk)) ≤ εk. (42)

With an application of the triangle inequality, it follows that

dist(−βk−1DA(xk)>A(xk), ∂g(xk))

≤ ‖∇f(xk)‖+ ‖DA(xk)>yk−1‖+ εk, (43)

which in turn implies that

dist(−DA(xk)>A(xk), ∂g(xk)/βk−1)

≤ ‖∇f(xk)‖
βk−1

+
‖DA(xk)>yk−1‖

βk−1
+

εk
βk−1

≤
λ′f + λ′A‖yk−1‖+ εk

βk−1
, (44)

where λ′f , λ
′
A were defined in (19). We next translate (44) into a bound on the feasibility gap

‖A(xk)‖. Using the regularity condition (20), the left-hand side of (44) can be bounded below as

dist(−DA(xk)>A(xk), ∂g(xk)/βk−1)

≥ ν‖A(xk)‖, (see (20)) (45)

provided that ρ, ρ′ satisfy

max
k∈K
‖A(xk)‖ ≤ ρ, max

k∈K
‖xk‖ ≤ ρ′. (46)

By substituting (45) back into (44), we find that

‖A(xk)‖ ≤
λ′f + λ′A‖yk−1‖+ εk

νβk−1
. (47)

In words, the feasibility gap is directly controlled by the dual sequence {yk}k. We next establish
that the dual sequence is bounded. Indeed, for every k ∈ K, note that

‖yk‖ = ‖y0 +

k∑
i=1

σiA(xi)‖ (Step 5 of Algorithm 1)

≤ ‖y0‖+

k∑
i=1

σi‖A(xi)‖ (triangle inequality)

≤ ‖y0‖+

k∑
i=1

‖A(x1)‖ log2 2

k log2(k + 1)
(Step 4)

≤ ‖y0‖+ c‖A(x1)‖ log2 2 =: ymax, (48)

where

c ≥
∞∑
i=1

1

k log2(k + 1)
. (49)

Substituting (48) back into (47), we reach

‖A(xk)‖ ≤
λ′f + λ′Aymax + εk

νβk−1

≤
2λ′f + 2λ′Aymax

νβk−1
, (50)

18

where the second line above holds if k0 is large enough, which would in turn guarantees that
εk = 1/βk−1 is sufficiently small since {βk}k is increasing and unbounded. Let us now revisit and
simplify (46). Note that ρ′ automatically satisfies the second inequality there, owing to Step 3 of
Algorithm 1. Also, ρ satisfies the first inequality in (46) if

λ′f + λ′Aymax

νAβ1
≤ ρ/2, (51)

and k0 is large enough. Indeed, this claim follows directly from (50).
It remains to control the first term in (12). To that end, after recalling Step 2 of Algorithm 1

and applying the triangle inequality, we can write that

dist(−∇xLβk−1
(xk, yk), ∂g(xk))

≤ dist(−∇xLβk−1
(xk, yk−1), ∂g(xk−1))

+ ‖∇xLβk−1
(xk, yk)−∇xLβk−1

(xk, yk−1)‖. (52)

The first term on the right-hand side above is bounded by εk, by Step 5 of Algorithm 1. For the
second term on the right-hand side of (52), we write that

‖∇xLβk−1
(xk, yk)−∇xLβk−1

(xk, yk−1)‖
= ‖DA(xk)>(yk − yk−1)‖ (see (7))
≤ λ′A‖yk − yk−1‖ (see (19))
= λ′Aσk‖A(xk)‖ (see Step 5 of Algorithm 1)

≤ 2λ′Aσk
νβk−1

(λ′f + λ′Aymax). (see (50)) (53)

By combining (52,53), we find that

dist(∇xLβk−1
(xk, yk), ∂g(xk))

≤ 2λ′Aσk
νβk−1

(λ′f + λ′Aymax) + εk. (54)

By combining (50,54), we find that

dist(−∇xLβk−1
(xk, yk), ∂g(xk)) + ‖A(xk)‖

≤
(

2λ′Aσk
νβk−1

(λ′f + λ′Aymax) + εk

)
+ 2

(
λ′f + λ′Aymax

νβk−1

)
. (55)

Applying σk ≤ σ1, we find that

dist(−∇xLβk−1
(xk, yk), ∂g(xk)) + ‖A(xk)‖

≤ 2λ′Aσ1 + 2

νβk−1
(λ′f + λ′Aymax) + εk. (56)

For the second part of the theorem, we use the Weyl’s inequality and Step 5 of Algorithm 1 to
write

λmin(∇xxLβk−1
(xk, yk−1)) ≥ λmin(∇xxLβk−1

(xk, yk))

− σk‖
m∑
i=1

Ai(xk)∇2Ai(xk)‖. (57)

The first term on the right-hand side is lower bounded by −εk−1 by Step 2 of Algorithm 1. We
next bound the second term on the right-hand side above as

σk‖
m∑
i=1

Ai(xk)∇2Ai(xk)‖

≤ σk
√
mmax

i
‖Ai(xk)‖‖∇2Ai(xk)‖

≤ σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1
,

19

where the last inequality is due to (5,50). Plugging into (57) gives

λmin(∇xxLβk−1
(xk, yk−1))

≥ −εk−1 − σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1
,

which completes the proof of Theorem 4.1.

B Proof of Corollary 4.2
LetK denote the number of (outer) iterations of Algorithm 1 and let εf denote the desired accuracy
of Algorithm 1, see (11). Recalling Theorem 4.1, we can then write that

εf =
Q

βK
, (58)

or, equivalently, βK = Q/εf . We now count the number of total (inner) iterations T of Algorithm 1
to reach the accuracy εf . From (17) and for sufficiently large k, recall that λβk

≤ λ′′βk is the
smoothness parameter of the augmented Lagrangian. Then, from (25) ad by summing over the
outer iterations, we bound the total number of (inner) iterations of Algorithm 1 as

T =

K∑
k=1

O

(
λ2
βk−1

x2
max

εk

)

=

K∑
k=1

O
(
β3
k−1x

2
max

)
(Step 1 of Algorithm 1)

≤ O
(
Kβ3

K−1x
2
max

)
({βk}k is increasing)

≤ O

(
KQ3x2

max

ε3f

)
. (see (58)) (59)

In addition, if we specify βk = bk for all k, we can further refine T . Indeed,

βK = bK =⇒ K = logb

(
Q

εf

)
, (60)

which, after substituting into (59) gives the final bound in Corollary 4.2.

C Proof of Lemma 2.1
Note that

Lβ(x, y) = f(x) +

m∑
i=1

yiAi(x) +
β

2

m∑
i=1

(Ai(x))2, (61)

which implies that

∇xLβ(x, y)

= ∇f(x) +

m∑
i=1

yi∇Ai(x) +
β

2

m∑
i=1

Ai(x)∇Ai(x)

= ∇f(x) +DA(x)>y + βDA(x)>A(x), (62)

where DA(x) is the Jacobian of A at x. By taking another derivative with respect to x, we reach

∇2
xLβ(x, y) = ∇2f(x) +

m∑
i=1

(yi + βAi(x))∇2Ai(x)

+ β

m∑
i=1

∇Ai(x)∇Ai(x)>. (63)

20

It follows that

‖∇2
xLβ(x, y)‖

≤ ‖∇2f(x)‖+ max
i
‖∇2Ai(x)‖ (‖y‖1 + β‖A(x)‖1)

+ β

m∑
i=1

‖∇Ai(x)‖2

≤ λh +
√
mλA (‖y‖+ β‖A(x)‖) + β‖DA(x)‖2F . (64)

For every x such that ‖A(x)‖ ≤ ρ and ‖x‖ ≤ ρ′, we conclude that

‖∇2
xLβ(x, y)‖ ≤ λf +

√
mλA (‖y‖+ βρ)

+ β max
‖x‖≤ρ′

‖DA(x)‖2F , (65)

which completes the proof of Lemma 2.1.

D Clustering
We only verify the condition in (20). Note that

A(x) = V V >1− 1, (66)

DA(x) =

 w1,1x
>
1 · · · w1,nx

>
1

...
wn,1x

>
n · · · wn,n1x>n

=
[
V · · · V

]
+

 x>1
. . .

x>n

 , (67)

where wi.i = 2 and wi,j = 1 for i 6= j. In the last line above, n copies of V appear and the last
matrix above is block-diagonal. For xk, define Vk as in the example and let xk,i be the ith row of
Vk. Consequently,

DA(xk)>A(xk) =

 V >k (VkV
>
k − In)1
...

V >k (VkV
>
k − In)1

+

 xk,1(VkV
>
k 1− 1)1

...
xk,n(VkV

>
k 1− 1)n

 , (68)

where In ∈ Rn×n is the identity matrix. Let us make a number of simplifying assumptions. First,
we assume that xk ∈ relint(C) so that ∂g(xk) = {0}, which can be easily enforced in the iterates.
Second, we assume that Vk has nearly orthonormal columns, namely, VkV >k ≈ In. This can also be
easily enforced in each iterate of Algorithm 1 and naturally corresponds to well-separated clusters.
While a more fine-tuned argument can remove these assumptions, they will help us simplify the

21

derivations. Under these assumptions, the squared right-hand side of (20) becomes

dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)2

= dist
(
−DA(xk)>A(xk), {0}

)2
= ‖DA(xk)>A(xk)‖2

=

∥∥∥∥∥∥∥
xk,1(VkV

>
k 1− 1)1

...
xk,n(VkV

>
k 1− 1)n

∥∥∥∥∥∥∥
2

=

n∑
i=1

‖xk,i‖2(VkV
>
k 1− 1)2

i

≥ min
i
‖xk,i‖2 ·

n∑
i=1

(VkV
>
k 1− 1)2

i

= min
i
‖xk,i‖2 · ‖VkV >k 1− 1‖2. (69)

We can enforce the iterates to satisfy ‖xk,i‖ ≥ ν, which corresponds again to well-separated clusters,
and guarantee (20). In practice, often n exceeds the number of true clusters and a more fine-tuned
analysis is required to establish (20) by restricting the argument to a particular subspace of Rn.

E Generalized eigenvalue problem
Here, we verify the regularity condition in (20) for problem (35). Note that

DA(x) = (2Bx)>

Therefore,

dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)2

= dist
(
−DA(xk)>A(xk), {0}

)2
= ‖DA(xk)>A(xk)‖2

= ‖2Bx(x>Bx− 1)‖2

= 4(x>Bx− 1)2‖Bx‖2

= 4‖Bx‖2‖A(x)‖2

≥ η2
min‖x‖2‖A(x)‖2

≥ ν2‖A(x)‖2. (70)

where ηmin is the smallest eigenvalue of the positive definite matrix B. Therefore, regularity
condition holds with ‖x‖ ≥ ν/ηmin.

F Basis Pursuit
We only verify the regularity condition in (20) for (1) with f,A specified in (39). Note that

DA(x) = 2Bdiag(x),

where diag(x) ∈ R2d×2d is the diagonal matrix formed by x. The left-hand side of (20) then reads
as

dist
(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)
= dist

(
−DA(xk)>A(xk), {0}

)
= ‖DA(xk)>A(xk)‖

= 2‖diag(xk)B
>

(Bx◦2k − b)‖. (71)

22

To bound the last line above, let x∗ be a solution of Program (1) and note that Bx◦2∗ = b by
definition. Let also zk, z∗ ∈ Rd denote the vectors corresponding to xk, x∗. Corresponding to xk,
also define uk,1, uk,2 naturally and let |zk| = u◦2k,1 + u◦2k,2 ∈ Rd be the amplitudes of zk. To simplify
matters, let us assume also that B is full-rank. We then rewrite the last line of (71) as

‖diag(xk)B
>

(Bx◦2k − b)‖2

= ‖diag(xk)B
>
B(x◦2k − x◦2∗)‖2

= ‖diag(xk)B
>
B(xk − x∗)‖2

= ‖diag(uk,1)B>B(xk − x∗)‖2

+ ‖diag(uk,2)B>B(xk − x∗)‖2

= ‖diag(u◦2k,1 + u◦2k,2)B>B(xk − x∗)‖2

= ‖diag(|zk|)B>B(xk − x∗)‖2

≥ ηn(Bdiag(|zk|))2‖B(xk − x∗)‖2

= ηn(Bdiag(|zk|))2‖Bxk − b‖2, (72)

where ηn(·) returns the nth largest singular value of its argument. We can therefore ensure that
(20) holds by enforcing that

zk ∈
{
z ∈ Rd : ηn(Bdiag(|z|)) > ν

}
, (73)

for every iteration k.

23

