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Abstract
We propose a practical inexact augmented La-
grangian method (iALM) for nonconvex prob-
lems with nonlinear constrains. We characterize
the total computational complexity of our method
subject to a verifiable geometric condition.

In particular, when a first-order solver is used for
the inner iterates, we prove that iALM finds a
first-order stationary point with Õ(1/ε3) calls to
the first-order oracle. Likewise, when a second-
order solver is used for the inner iterates, we
prove that iALM finds a second-order stationary
point with Õ(1/ε5) calls to the second-order or-
acle. These complexity results match the known
theoretical results in the literature with a simple,
implementable and versatile algorithm.

We provide numerical evidence on large-scale
machine learning problems, including the Burer-
Monteiro factorization of standard form Semidefi-
nite Programming (SDP) relaxations, for which
we verify our geometric condition in specific
cases. For these problems and under suitable as-
sumptions, our algorithm in fact achieves global
optimality for the underlying convex SDP.

1. Introduction
We study the following nonconvex optimization problem{

min
x∈Rd

f(x) + g(x)

A(x) = b,
(1)

where f : Rd → R is possibly non-convex and A : Rd →
Rm is a nonlinear operator and b ∈ Rm. For clarity of
notation, we take b = 0 in the sequel, the extension to any b
is trivial. We assume that g : Rd → R is proximal-friendly
(possibly nonsmooth) convex function.
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A host of problems in computer science (Khot & Naor, 2011;
Lovász, 2003), machine learning (Mossel et al., 2015; Song
et al., 2007), and signal processing (Singer, 2011; Singer &
Shkolnisky, 2011) naturally fall under the template of (1),
including max-cut, clustering, generalized eigenvalue, as
well as community detection.

To address these applications, this paper builds up on the
vast literature on the classical inexact augmented Lagrangian
framework and proposes a simple, intuitive as well as easy-
to-implement algorithm with total complexity results for
(1) under an interpretable geometric condition. Before we
elaborate on the results, let us first motivate (1) with an
important application to semidefinite programming (SDP):

Vignette: Burer-Monteiro splitting. A powerful convex
relaxation for max-cut, clustering, and several other prob-
lems above is provided by the SDP{

min
X∈Sd×d

〈C,X〉

B(X) = b, X � 0,
(2)

where C ∈ Rd×d and X is a positive semidefinite and
symmetric d × d matrix, and B : Sd×d → Rm is a lin-
ear operator. If the unique-games conjecture is true, SDPs
achieve the best approximation for the underlying discrete
problem (Raghavendra, 2008).

Since d is often large, many first- and second-order methods
for solving such SDP’s are immediately ruled out, not only
due to their high computational complexity, but also due to
their storage requirements, which are O(d2).

A contemporary challenge in optimization therefore is to
solve SDP’s in small space and in a scalable fashion. A re-
cent algorithm, i.e., homotopy conditional gradient method
(HCGM) based on Linear Minimization Oracles (LMO),
can address this template in small space via sketching (Yurt-
sever et al., 2018); however, such LMO-based methods are
extremely slow in obtaining accurate solutions.

A key approach for solving (1), dating back to (Burer &
Monteiro, 2003; 2005), is the so-called Burer-Monteiro (BR)
splitting X = UU>, where U ∈ Rd×r and r is selected ac-
cording to the guidelines in (Pataki, 1998; Barvinok, 1995).
It has been shown that these bounds on the rank, which are
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Inexact Augmented Lagrangian Framework for Non-Convex Optimization

shown to be optimal (Waldspurger & Waters, 2018), under
some assumptions removing the spurious local minima of
the nonconvex factorized problem (Boumal et al., 2016b).

This splitting results in the following non-convex problem{
min

U∈Rd×r
〈C,UU>〉

B(UU>) = b,
(3)

which can be written in the form of (1).

To solve (3), the inexact Augmented Lagrangian Method
(iALM) is widely used (Burer & Monteiro, 2003; 2005;
Kulis et al., 2007), due to its cheap per iteration cost and
also its empirical success in practice. Every (outer) iteration
of iALM calls a solver to inexactly solve an intermediate
augmented Lagrangian subproblem to near stationarity, and
the user has freedom in choosing this solver, which could
use first-order (say, proximal gradient descent (Parikh et al.,
2014)) or second-order information, such as BFGS (Nocedal
& Wright, 2006).

We argue that unlike its convex counterpart (Nedelcu et al.,
2014; Lan & Monteiro, 2016; Xu, 2017), the convergence
rate and the complexity of iALM for (3) are not well-
understood, see Section 5 for a review of the related lit-
erature. Indeed, addressing this important theoretical gap is
one of the contributions of our work.

A brief summary of our contributions:
◦ Our framework is future-proof in the sense that we obtain
the convergence rate of iALM for (1) with an arbitrary
solver for finding first- and second-order stationary points.

◦We investigate using different solvers for augmented La-
grangian subproblems and provide overall iteration com-
plexity bounds for finding first- and second-order stationary
points of (1). Our complexity bounds match the best theo-
retical complexity results in optimization, see Section 5.

◦We propose a novel geometric condition that simplifies
the algorithmic analysis for iALM. We verify the condition
for key problems described in Section 6.

Roadmap. Section 2 collects the main tools and our no-
tation. We present the iALM in Section 3 and obtain its
convergence rate to first- and second-order stationary points
in Section 4, alongside their iteration complexities. We pro-
vide a comprehensive review of the literature and highlight
our key differences in Section 5. Section 6 presents the nu-
merical evidence and comparisons with the state-of-the-art.

2. Preliminaries
Notation. We use the notation 〈·, ·〉 and ‖ · ‖ for the stan-
dard inner product and the norm on Rd. For matrices, ‖ · ‖
and ‖ · ‖F denote the spectral and the Frobenius norms,
respectively. For a convex function g : Rd → R, the subdif-

ferential set at x ∈ Rd is denoted by ∂g(x) and we will oc-
casionally use the notation ∂g(x)/β = {z/β : z ∈ ∂g(x)}.
When presenting iteration complexity results, we often use
Õ(·) which suppresses the logarithmic dependencies.

We use the indicator function δX : Rd → R of a set X ⊂
Rd, which takes x to

δX (x) =

{
0 x ∈ X
∞ x /∈ X .

(4)

The distance function from a point x to X is denoted by
dist(x,X ) = minz∈X ‖x − z‖. For integers k0 ≤ k1, we
denote [k0 : k1] = {k0, . . . , k1}.

For an operator A : Rd → Rm with components {Ai}mi=1,
we let DA(x) ∈ Rm×d denote the Jacobian of A, where the
ith row of DA(x) is the gradient vector∇Ai(x) ∈ Rd.

Smoothness. We require f : Rd → R and A : Rd → Rm
in (1) to be smooth; i.e., there exists λf , λA ≥ 0 such that

‖∇f(x)−∇f(x′)‖ ≤ λf‖x− x′‖,
‖DA(x)−DA(x′)‖ ≤ λA‖x− x′‖, (5)

for every x, x′ ∈ Rd.

The augmented Lagrangian method (ALM). ALM is a
classical algorithm, first appeared in (Hestenes, 1969; Pow-
ell, 1969) and extensively studied in (Bertsekas, 2014). For
solving (1), ALM suggests solving the problem

min
x

max
y
Lβ(x, y) + g(x), (6)

where, for β > 0, Lβ is the corresponding augmented
Lagrangian, defined as

Lβ(x, y) := f(x) + 〈A(x), y〉+
β

2
‖A(x)‖2. (7)

The minimax formulation in (6) naturally suggests the fol-
lowing algorithm for solving (1). For dual step sizes {σk}k,
consider the iterates

xk+1 ∈ argmin
x

Lβ(x, yk) + g(x), (8)

yk+1 = yk + σkA(xk+1).

However, updating xk+1 above requires solving the noncon-
vex problem (8) to optimality, which is typically intractable.
Instead, it is often easier to find an approximate first- or
second-order stationary point of (8).

Hence, we argue that by gradually improving the stationarity
precision and increasing the penalty weight β above, we
can reach a stationary point of the main problem in (1), as
detailed in Section 3.
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Optimality conditions. First-order necessary optimality
conditions for (1) are well-understood. Indeed, x ∈ Rd is
a first-order stationary point of (1) if there exists y ∈ Rm
such that {

−∇f(x)−DA(x)>y ∈ ∂g(x)

A(x) = 0,
(9)

where DA(x) is the Jacobian of A at x. Recalling (7), we
observe that (9) is equivalent to{

−∇xLβ(x, y) ∈ ∂g(x)

A(x) = 0,
(10)

which is in turn the necessary optimality condition for (6).
Inspired by this, we say that x is an (εf , β) first-order sta-
tionary point if{

dist(−∇xLβ(x, y), ∂g(x)) ≤ εf
‖A(x)‖ ≤ εf ,

(11)

for εf ≥ 0. In light of (11), a suitable metric for evaluating
the stationarity of a pair (x, y) ∈ Rd × Rm is

dist (−∇xLβ(x, y), ∂g(x)) + ‖A(x)‖, (12)

which we use as the first-order stopping criterion. As an
example, for a convex set X ⊂ Rd, suppose that g = δX is
the indicator function on X . Let also TX (x) ⊆ Rd denote
the tangent cone to X at x, and with PTX (x) : Rd → Rd,
we denote the orthogonal projection onto this tangent cone.
Then, for u ∈ Rd, it is not difficult to verify that

dist (u, ∂g(x)) = ‖PTX (x)(u)‖. (13)

When g = 0, a first-order stationary point x ∈ Rd of (1) is
also second-order stationary if

λmin(∇xxLβ(x, y)) > 0, (14)

where ∇xxLβ is the Hessian with respect to x, and λmin(·)
returns the smallest eigenvalue of its argument. Analo-
gously, x is an (εf , εs, β) second-order stationary point if,
in addition to (11), it holds that

λmin(∇xxLβ(x, y)) ≥ −εs, (15)

for εs > 0. Naturally, for second-order stationarity, we use
λmin(∇xxLβ(x, y)) as the stopping criterion.

Smoothness lemma. This next result controls the smooth-
ness of Lβ(·, y) for a fixed y. The proof is standard but
nevertheless included in Appendix C for completeness.

Lemma 2.1 (smoothness). For fixed y ∈ Rm and ρ, ρ′ ≥ 0,
it holds that

‖∇xLβ(x, y)−∇xLβ(x′, y)‖ ≤ λβ‖x− x′‖, (16)

for every x, x′ ∈ {x′′ : ‖A(x′′)‖ ≤ ρ, ‖x′′‖ ≤ ρ′}, where

λβ ≤ λf +
√
mλA‖y‖+ (

√
mλAρ+ dλ′2A)β

=: λf +
√
mλA‖y‖+ λ′′(A, ρ, ρ′)β. (17)

Above, λf , λA were defined in (5) and

λ′A := max
‖x‖≤ρ′

‖DA(x)‖. (18)

3. Our optimization framework
To solve the formulation presented in (6), we propose the
inexact ALM (iALM), detailed in Algorithm 1.

At the iteration k, Algorithm 1 calls in Step 2 a solver that
finds an approximate stationary point of the augmented
Lagrangian Lβk

(·, yk) with the accuracy of εk+1, and this
accuracy gradually increases in a controlled fashion.

The increasing sequence of penalty weights {βk}k and the
dual update (Steps 4 and 5) are responsible for continuously
enforcing the constraints in (1). As we will see in the con-
vergence analysis, the particular choice of the dual step size
σk in Algorithm 1 ensures that the dual variable yk remains
bounded; see (Bertsekas, 1976) for a precedent in the ALM
literature where a similar choice for σk is considered.

Step 3 of Algorithm 1 removes pathological cases with
divergent iterates. As an example, suppose that g = δX
in (1) is the indicator function for a bounded convex set
X ⊂ Rd and take ρ′ > maxx∈X ‖x‖. Then, for sufficiently
large k, it is not difficult to verify that all the iterates of
Algorithm 1 automatically satisfy ‖xk‖ ≤ ρ′ without the
need to execute Step 3.

4. Convergence Rate
In this section, we detail the convergence rate of Algorithm 1
for finding first-order and second-order stationary points,
along with the iteration complexity results. All the proofs
are deferred to Appendix A for the clarity.

Theorem 4.1 below characterizes the convergence rate of
Algorithm 1 for finding stationary points in terms of the
number of outer iterations.

Theorem 4.1. (convergence rate) Suppose that f and A
are smooth in the sense specified in (5). For ρ′ > 0, let

λ′f = max
‖x‖≤ρ′

‖∇f(x)‖, λ′A = max
‖x‖≤ρ′

‖DA(x)‖, (19)

be the (restricted) Lipschitz constants of f and A, respec-
tively. For sufficiently large integers k0 ≤ k1, consider the
interval K = [k0 : k1], and let {xk}k∈K be the output
sequence of Algorithm 1 on the interval K. For ν > 0,
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Algorithm 1 Inexact AL for solving (1)
Input: ρ, ρ′, ρ′′ > 0. A non-decreasing, positive, un-
bounded sequence {βk}k≥1, stopping thresholds τf and
τs.
Initialization: x1 ∈ Rd such that ‖A(x1)‖ ≤ ρ and
‖x1‖ ≤ ρ′, y0 ∈ Rm, σ1.
for k = 1, 2, . . . do
1. (Update tolerance) εk+1 = 1/βk.

2. (Inexact primal solution) Obtain xk+1 ∈ Rd such
that

dist(−∇xLβk
(xk+1, yk), ∂g(xk+1)) ≤ εk+1

for first-order stationarity and, in addition,

λmin(∇xxLβk
(xk+1, yk)) ≥ −εk+1

for second-order-stationarity.

3. (Control) If necessary, project xk+1 to ensure that
‖xk+1‖ ≤ ρ′.

4. (Update dual step size)

σk+1 = σ1 min
( ‖A(x1)‖ log2 2

‖A(xk+1)‖(k + 1) log2(k + 2)
, 1
)
.

5. (Dual ascent) yk+1 = yk + σk+1A(xk+1).

6. (Stopping criterion) If

dist(−∇xLβk
(xk+1), ∂g(xk+1))

+ σk+1‖A(xk+1)‖ ≤ τf ,

for first-order stationarity and if also
λmin(∇xxLβk

(xk+1, yk)) ≥ −τs for second-
order stationarity, then quit and return xk+1 as an
(approximate) stationary point of (1).

end for

assume that

ν‖A(xk)‖ ≤ dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)
, (20)

for every k ∈ K. We consider two cases:

• If a first-order solver is used in Step 2, then xk is an
(εk,f , βk) first-order stationary point of (1) with

εk,f =
1

βk−1

(
2(λ′f + λ′Aymax)(1 + λ′Aσk)

ν
+ 1

)
=:

Q(f, g, A, σ1)

βk−1
, (21)

for every k ∈ K, where the expression for ymax =
ymax(x1, y0, σ1) is given in (43).

• If a second-order solver is used in Step 2, then xk is an
(εk,f , εk,s, βk) second-order stationary point of (1) with
εk,s specified above and with

εk,s = εk−1 + σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1

=
ν + σk

√
mλA2λ′f + 2λ′Aymax

νβk−1
=:

Q′

βk−1
. (22)

Loosely speaking, Theorem 4.1 states that Algorithm 1 con-
verges to a (first- or second-) order stationary point of (1) at
the rate of 1/βk.

A few remarks are in order.

Regularity. The key condition in Theorem 4.1 is (20)
which, broadly speaking, controls the problem geometry.

As the penalty weight βk grows, the primal solver in Step 2
places an increasing emphasis on reducing the feasibility
gap and (20) formalizes this intuition. In contrast to most
conditions in the nonconvex optimization literature, such
as (Flores-Bazán et al., 2012), our condition in (20) appears
to be easier to verify, as we see in Section 6.

We now argue that such a condition is necessary for control-
ling the feasibility gap of (1) and ensuring the success of
Algorithm 1. Consider the case where f = 0 and g = δX ,
where X is a convex set, A is a linear operator. In this case,
solving (1) finds a point in X ∩null(A), where the subspace
null(A) = {x ∈ Rd : A(x) = 0} ⊂ Rd is the null space of
A. Here, the Slater’s condition requires that

relint(X ) ∩ null(A) 6= ∅. (23)

In general, the Slater’s condition plays a key role in con-
vex optimization as a sufficient condition for strong du-
ality and, as a result, guarantees the success of a variety
of primal-dual algorithms for linearly-constrained convex
programs (Bauschke et al., 2011).

Intuitively, the Slater’s condition here removes any patho-
logical cases by ensuring that the subspace null(A) is not
tangent to X , see Figure 1. In such pathological cases,
solving (1), namely, finding a point in X ∩ null(A), can be
particularly difficult. For instance, the alternating projection
algorithm (which iteratively projects onto X and null(A))
has arbitrarily slow convergence, see Figure 1.

Computational complexity. Theorem 4.1 allows us to
specify the number of iterations that Algorithm 1 requires
to reach a near-stationary point of Program (1) with a pre-
scribed precision and, in particular, specifies the number of
calls made to the solver in Step 2. In this sense, Theorem 4.1
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𝒳

null 𝐴

Figure 1. Solving (1) can be particularly difficult, even when (1)
is a convex program. We present a pathological geometry where
the Slater’s condition does not apply. See the first remark after
Theorem 4.1 for more details.

does not fully capture the computational complexity of Al-
gorithm 1, as it does not take into account the computational
cost of the solver in Step 2.

To better understand the total complexity of Algorithm 1,
we consider two scenarios in the following. In the first
scenario, we take the solver in Step 2 to be the Accelerated
Proximal Gradient Method (APGM), a well-known first-
order algorithm (Ghadimi & Lan, 2016). In the second
scenario, we will use the second-order trust region method
developed in (Cartis et al., 2012).

4.1. First-Order Optimality

Let us first consider the first-order optimality case where the
solver in Step 2 is APGM (Ghadimi & Lan, 2016). APGM
makes use of ∇xLβ(x, y), proxg and classical Nesterov
acceleration step for the iterates (Nesterov, 1983) to obtain
first order stationarity guarantees for solving (8). Suppose
that g = δX is the indicator function on a bounded convex
set X ⊂ Rd and let

xmax = max
x∈X
‖x‖, (24)

be the radius of a ball centered at the origin that includes X .
Then, adapting the results in (Ghadimi & Lan, 2016) to our
setup, APGM reaches xk in Step 2 of Algorithm 1 after

O

(
λ2
βk
x2

max

εk+1

)
(25)

(inner) iterations, where λβk
denotes the Lipschitz constant

of ∇xLβk
(x, y), bounded in (17). We note that for simplic-

ity, we use a looser bound in (25) than (Ghadimi & Lan,
2016). Using (25), we derive the following corollary, de-
scribing the total computational complexity of Algorithm 1
in terms of the calls to the first-order oracle in APGM.

Corollary 4.2. For b > 1, let βk = bk for every k. If
we use APGM from (Ghadimi & Lan, 2016) for Step 2
of Algorithm 1, the algorithm finds an (εf , βk) first-order
stationary point, see (11), after T calls to the first-order

oracle, where

T = O
(
Q3x2

max

ε3
logb

(
Q

ε

))
= Õ

(
Q3x2

max

ε3

)
. (26)

For Algorithm 1 to reach a near-stationary point with an
accuracy of εf in the sense of (11) and with the lowest
computational cost, we therefore need to perform only one
iteration of Algorithm 1, with β1 specified as a function of
εf by (21) in Theorem 4.1. In general, however, the con-
stants in (21) are unknown and this approach is intractable.
Instead, the homotopy approach taken by Algorithm 1 en-
sures achieving the desired accuracy by gradually increasing
the penalty weight. This homotopy approach increases the
computational cost of Algorithm 1 only by a factor logarith-
mic in the εf , as detailed in the proof of Corollary 4.2.

4.2. Second-Order Optimality

Let us now consider the second-order optimality case where
the solver in Step 2 is the the trust region method devel-
oped in (Cartis et al., 2012). Trust region method minimizes
quadratic approximation of the function within a dynami-
cally updated trust-region radius. Second-order trust region
method that we consider in this section makes use of Hes-
sian (or an approximation of Hessian) of the augmented
Lagrangian in addition to first order oracles.

As shown in (Nouiehed et al., 2018), finding approximate
second-order stationary points of convex-constrained prob-
lems is in general NP-hard. For this reason, we focus in this
section on the special case of (1) with g = 0.

Let us compute the total computational complexity of Al-
gorithm 1 with the trust region method in Step 2, in terms
of the number of calls made to the second-order oracle. By
adapting the result in (Cartis et al., 2012) to our setup, we
find that the number of (inner) iterations required in Step 2
of Algorithm 1 to produce xk+1 is

O

(
λ2
βk,H

(Lβk
(x1, y)−minx Lβk

(x, y))

ε3k

)
, (27)

where λβ,H is the Lipschitz constant of the Hessian of the
augmented Lagrangian, which is of the order of β, as can
be proven similar to Lemma 2.1 and x1 is the initial iterate
of the given outer loop. In (Cartis et al., 2012), the term
Lβ(x1, y)−minx Lβ(x, y) is bounded by a constant inde-
pendent of ε. We assume a uniform bound for this quantity
∀βk, instead of for one value of βk as in (Cartis et al., 2012).
Using (27) and Theorem 4.1, we arrive at the following:

Corollary 4.3. For b > 1, let βk = bk for every k. We
assume that

Lβ(x1, y)−min
x
Lβ(x, y) ≤ Lu, ∀β. (28)
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If we use the trust region method from (Cartis et al., 2012)
for Step 2 of Algorithm 1, the algorithm finds an ε-second-
order stationary point of (1) in T calls to the second-order
oracle where

T ≤ O
(
LuQ

′5

ε5
logb

(
Q′

ε

))
= Õ

(
LuQ

′5

ε5

)
. (29)

Before closing this section, we note that the remark after
Corollary 4.2 applies here as well.

5. Related works
ALM has a long history in the optimization literature, dating
back to (Hestenes, 1969; Powell, 1969). In the special case
of (1) with a convex function f and a linear operator A,
standard, inexact and linearized versions of ALM have been
extensively studied (Lan & Monteiro, 2016; Nedelcu et al.,
2014; Tran-Dinh et al., 2018; Xu, 2017).

Classical works on ALM focused on the general template
of (1) with nonconvex f and nonlinear A, with arguably
stronger assumptions and required exact solutions to the
subproblems of the form (8), which appear in Step 2 of
Algorithm 1, see for instance (Bertsekas, 2014).

A similar analysis was conducted in (Fernández & Solodov,
2012) for the general template of (1). The authors consid-
ered inexact ALM and proved convergence rates for the
outer iterates, under specific assumptions on the initializa-
tion of the dual variable. However, unlike our results, the
authors did not analyze how to solve the subproblems inex-
actly and they did not provide total complexity results and
verifiable conditions.

Problem (1) with similar assumptions to us is also studied
in (Birgin et al., 2016) and (Cartis et al., 2018) for first-
order and second-order stationarity, respectively, with ex-
plicit iteration complexity analysis. As we have mentioned
in Section 4, our iteration complexity results matches these
theoretical algorithms with a simpler algorithm and a sim-
pler analysis. In addition, these algorithms require setting
final accuracies since they utilize this information in the
algorithm. In contrast to (Birgin et al., 2016; Cartis et al.,
2018), Algorithm 1 does not set accuracies a priori.

(Cartis et al., 2011) also considers the same template (1) for
first-order stationarity with a penalty-type method instead of
ALM. Even though the authors show O(1/ε2) complexity,
this result is obtained by assuming that the penalty parameter
remains bounded. We note that such an assumption can also
be used to match our complexity results.

(Bolte et al., 2018) studies the general template (1) with
specific assumptions involving local error bound conditions
for the (1). These conditions are studied in detail in (Bolte
et al., 2017), but their validity for general SDPs (2) has never

been established. This work also lacks the total iteration
complexity analysis presented here.

Another work (Clason et al., 2018) focused on solving (1)
by adapting the primal-dual method of Chambolle and
Pock (Chambolle & Pock, 2011). The authors proved the
convergence of the method and provided convergence rate
by imposing error bound conditions on the objective func-
tion that do not hold for standard SDPs.

(Burer & Monteiro, 2003; 2005) is the first work that pro-
poses the splitting X = UU> for solving SDPs of the
form (2). Following these works, the literature on Burer-
Monteiro (BM) splitting for the large part focused on using
ALM for solving the reformulated problem (3).

However, this approach has a few drawbacks: First, it re-
quires exact solutions in Step 2 of Algorithm 1 in theory,
which in practice is replaced with inexact solutions. Second,
their results only establish convergence without providing
the rates. In this sense, our work provides a theoretical
understanding of the BM splitting with inexact solutions to
Step 2 of Algorithm 1 and complete iteration complexities.

(Bhojanapalli et al., 2016; Park et al., 2016) are among the
earliest efforts to show convergence rates for BM splitting,
focusing on the special case of SDPs without any linear
constraints. For these specific problems, they prove the con-
vergence of gradient descent to global optima with conver-
gence rates, assuming favorable initialization. These results,
however, do not apply to general SDPs of the form (2) where
the difficulty arises due to the linear constraints.

(Bhojanapalli et al., 2018) focused on the quadratic penalty
formulation of (1), namely,

min
X�0
〈C,X〉+

µ

2
‖B(x)− b‖2, (30)

which after BM splitting becomes

min
U∈Rd×r

〈C,UU>〉+
µ

2
‖B(UU>)− b‖2, (31)

for which they study the optimality of the second-order
stationary points. These results are for establishing a con-
nection between the stationary points of (31) and global
optima of (30). In contrast, we focus on the relation of the
stationary points of (6) to the constrained problem (1).

Another popular method for solving SDPs are due
to (Boumal et al., 2014; 2016a;b), focusing on the case
where the constraints in (1) can be written as a Riemannian
manifold after BM splitting. In this case, the authors apply
the Riemannian gradient descent and Riemannian trust re-
gion methods for obtaining first- and second-order stationary
points, respectively. They obtain O(1/ε2) complexity for
finding first-order stationary points andO(1/ε3) complexity
for finding second-order stationary points.

nboumal-x1
Highlight



Inexact Augmented Lagrangian Framework for Non-Convex Optimization

While these complexities appear better than ours, the smooth
manifold requirement in these works is indeed restrictive.
In particular, this requirement holds for max-cut and gener-
alized eigenvalue problems, but it is not satisfied for other
important SDPs such as quadratic programming (QAP),
optimal power flow and clustering with general affine con-
straints. In addition, as noted in (Boumal et al., 2016a), per
iteration cost of their method for max-cut problem is an
astronomical O(d6).

Lastly, there also exists a line of work for solving SDPs
in their original convex formulation, in a storage efficient
way (Nesterov, 2009; Yurtsever et al., 2015; 2018). These
works have global optimality guarantees by their virtue
of directly solving the convex formulation. On the down-
side, these works require the use of eigenvalue routines and
exhibit significantly slower convergence as compared to
nonconvex approaches (Jaggi, 2013).

6. Numerical evidence
We first begin with a caveat: It is known that quasi-Newton
methods, such as BFGS and lBFGS, might not converge
for non-convex problems (Dai, 2002; Mascarenhas, 2004).
For this reason, we have used the trust region method as the
second-order solver in our analysis in Section 4, which is
well-studied for non-convex problems (Cartis et al., 2012).

Empirically, however, BFGS and lBGFS are extremely suc-
cessful and we have also opted for those solvers in this
section since the subroutine does not affect Theorem 4.1 as
long as the subsolver can perform in practice.

6.1. k-Means Clustering

Given data points {zi}ni=1, the entries of the correspond-
ing Euclidean distance matrix D ∈ Rnxn are Di,j =

‖zi − zj‖2. Clustering is then the problem of finding a co-
association matrix Y ∈ Rn×n such that Yij = 1 if points zi
and zj are within the same cluster and Yij = 0 otherwise.
In (Peng & Wei, 2007), the authors provide a SDP relaxation
of the clustering problem, specified as

{
min

Y ∈Rnxn
tr(DY )

Y 1 = 1, tr(Y ) = k, Y � 0, Y ≥ 0,
(32)

where k is the number of clusters and Y is both positive
semidefinite and has nonnegative entries. Standard SDP
solvers do not scale well with the number of data points n,
since they often require projection onto the semidefinite
cone with the complexity of O(n3). We instead use the
Burer-Monteiro splitting, sacrificing convexity to reduce the
computational complexity. More specifically, we solve the

program {
min

V ∈Rnxr
tr(DV V >)

V V >1 = 1, ‖V ‖2F ≤ k, V ≥ 0,
(33)

where 1 ∈ Rn is the vector of all ones. Note that Y ≥ 0
in (32) is replaced above by the much stronger but easier
to enforce constraint V ≥ 0 constraint above, see (Kulis
et al., 2007) for the reasoning behind this relaxation. Now,
we can cast (33) as an instance of (1). Indeed, for every
i ≤ n, let xi ∈ Rr denote the ith row of V . We next form
x ∈ Rd with d = nr by expanding the factorized variable
V , namely,

x = [x>1 , · · · , x>n ]> ∈ Rd,

and then set

f(x) =

n∑
i,j=1

Di,j 〈xi, xj〉 , g = δC ,

A(x) = [x>1

n∑
j=1

xj − 1, · · · , x>n
n∑
j=1

xj − 1]>, (34)

where C is the intersection of the positive orthant in Rd
with the Euclidean ball of radius

√
k. In Appendix E, we

somewhat informally verify that Theorem 4.1 applies to (1)
with f, g, A specified above.

In our simulations, we use two different solvers for Step 2
of Algorithm 1, namely, APGM and lBFGS. APGM is a
solver for non-convex problems of the form (8) with con-
vergence guarantees to first-order stationarity, as discussed
in Section 4. lBFGS is a limited-memory version of BFGS
algorithm in (Fletcher, 2013) that approximately leverages
the second-order information of the problem. We compare
our approach against the following convex methods:

• HCGM: Homotopy-based Conditional Gradient
Method in(Yurtsever et al., 2018) which directly
solves (32).

• SDPNAL+: A second-order augmented Lagrangian
method for solving SDP’s with nonnegativity con-
straints (Yang et al., 2015).

As for the dataset, our experimental setup is similar to that
described by (Mixon et al., 2016). We use the publicly-
available fashion-MNIST data in (Xiao et al., 2017), which
is released as a possible replacement for the MNIST hand-
written digits. Each data point is a 28×28 gray-scale image,
associated with a label from ten classes, labeled from 0 to 9.
First, we extract the meaningful features from this dataset
using a simple two-layer neural network with a sigmoid
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Figure 2. Convergence of different algorithms for k-Means clustering with fashion MNIST dataset. Here, we set the rank to be equal to
20 for the non-convex approaches. The solution rank for the template (32) is known and it is equal to number of clusters k (Theorem 1.
(Kulis et al., 2007)). As discussed in (Tepper et al., 2018), setting rank r > k leads more accurate reconstruction in expense of speed.
Therefore, we set the rank to 20.

activation function. Then, we apply this neural network to
1000 test samples from the same dataset, which gives us a
vector of length 10 for each data point, where each entry
represents the posterior probability for each class. Then, we
form the `2 distance matrix D from these probability vec-
tors. The results are depicted in Figure 2. We implemented
3 algorithms on MATLAB and used the software package
for SDPNAL+ which contains mex files. Performance of
the nonconvex approach would be much better if we also
used mex files.

6.2. Basis Pursuit

Basis Pursuit (BP) finds sparsest solutions of an under-
determined system of linear equations, namely,

{
minz ‖z‖1
Bz = b,

(35)

where B ∈ Rn×d and b ∈ Rn. BP has found many applica-
tions in machine learning, statistics and signal processing
(Chen et al., 2001; Candès & Wakin, 2008; Arora et al.,
2018). A huge number of primal-dual convex optimization
algorithms are proposed to solve BP, including, but not lim-
ited to (Tran-Dinh et al., 2018; Chambolle & Pock, 2011).
There also exists many line of works (Beck & Teboulle,
2009) to handle sparse regression problem via regulariza-
tion with `1 norm.

Here, we take a different approach and cast (35) as an in-
stance of (1). Note that any z ∈ Rd can be decomposed as
z = z+ − z−, where z+, z− ∈ Rd are the positive and neg-
ative parts of z, respectively. Then consider the change of
variables z+ = u◦21 and z− = u◦22 ∈ Rd, where ◦ denotes
element-wise power. Next, we concatenate u1 and u2 as
x := [u>1 , u

>
2 ]> ∈ R2d and define B := [B,−B] ∈ Rn×2d.

Then, (35) is equivalent to (1) with

f(x) =‖x‖22, g(x) = 0

A(x) =Bx◦2 − b. (36)

In Appendix D, we verify with minimal detail that Theo-
rem 4.1 indeed applies to (1) with the above f,A.

We draw the entries of B independently from a zero-mean
and unit-variance Gaussian distribution. For a fixed sparsity
level k, the support of z∗ ∈ Rd and its nonzero ampli-
tudes are also drawn from the standard Gaussian distribu-
tion. Then the measurement vector is created as b = Bz+ ε,
where ε is the noise vector with entries drawn independently
from the zero-mean Gaussian distribution with variance
σ2 = 10−6.
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Figure 3. Convergence with different subsolvers for the aforemen-
tioned non-convex relaxation.

Figure 3 compiles our results for the proposed relaxation. It
is, indeed, interesting to see that these type of non-convex
relaxations gives the solution of convex one and first order
methods succeed.

6.3. Adversarial Denoising with GANs

In the appendix, we provide a contemporary application
example that our template applies.
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Appendix
A. Proof of Theorem 4.1
For every k ≥ 2, recall from (7) and Step 2 of Algorithm 1 that xk satisfies

dist(−∇f(xk)−DA(xk)>yk−1

− βk−1DA(xk)>A(xk), ∂g(xk))

= dist(−∇xLβk−1
(xk, yk−1), ∂g(xk)) ≤ εk. (37)

With an application of the triangle inequality, it follows that

dist(−βk−1DA(xk)>A(xk), ∂g(xk))

≤ ‖∇f(xk)‖+ ‖DA(xk)>yk−1‖+ εk, (38)

which in turn implies that

dist(−DA(xk)>A(xk), ∂g(xk)/βk−1)

≤ ‖∇f(xk)‖
βk−1

+
‖DA(xk)>yk−1‖

βk−1
+

εk
βk−1

≤
λ′f + λ′A‖yk−1‖+ εk

βk−1
, (39)

where λ′f , λ
′
A were defined in (19). We next translate (39) into a bound on the feasibility gap ‖A(xk)‖. Using the regularity

condition (20), the left-hand side of (39) can be bounded below as

dist(−DA(xk)>A(xk), ∂g(xk)/βk−1)

≥ ν‖A(xk)‖, (see (20)) (40)

provided that ρ, ρ′ satisfy

max
k∈K
‖A(xk)‖ ≤ ρ, max

k∈K
‖xk‖ ≤ ρ′. (41)

By substituting (40) back into (39), we find that

‖A(xk)‖ ≤
λ′f + λ′A‖yk−1‖+ εk

νβk−1
. (42)

In words, the feasibility gap is directly controlled by the dual sequence {yk}k. We next establish that the dual sequence is
bounded. Indeed, for every k ∈ K, note that

‖yk‖ = ‖y0 +

k∑
i=1

σiA(xi)‖ (Step 5 of Algorithm 1)

≤ ‖y0‖+

k∑
i=1

σi‖A(xi)‖ (triangle inequality)

≤ ‖y0‖+

k∑
i=1

‖A(x1)‖ log2 2

k log2(k + 1)
(Step 4)

≤ ‖y0‖+ c‖A(x1)‖ log2 2 =: ymax, (43)

where

c ≥
∞∑
i=1

1

k log2(k + 1)
. (44)
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Substituting (43) back into (42), we reach

‖A(xk)‖ ≤
λ′f + λ′Aymax + εk

νβk−1

≤
2λ′f + 2λ′Aymax

νβk−1
, (45)

where the second line above holds if k0 is large enough, which would in turn guarantees that εk = 1/βk−1 is sufficiently
small since {βk}k is increasing and unbounded. Let us now revisit and simplify (41). Note that ρ′ automatically satisfies the
second inequality there, owing to Step 3 of Algorithm 1. Also, ρ satisfies the first inequality in (41) if

λ′f + λ′Aymax

νAβ1
≤ ρ/2, (46)

and k0 is large enough. Indeed, this claim follows directly from (45).

It remains to control the first term in (12). To that end, after recalling Step 2 of Algorithm 1 and applying the triangle
inequality, we can write that

dist(−∇xLβk−1
(xk, yk), ∂g(xk))

≤ dist(−∇xLβk−1
(xk, yk−1), ∂g(xk−1))

+ ‖∇xLβk−1
(xk, yk)−∇xLβk−1

(xk, yk−1)‖. (47)

The first term on the right-hand side above is bounded by εk, by Step 5 of Algorithm 1. For the second term on the right-hand
side of (47), we write that

‖∇xLβk−1
(xk, yk)−∇xLβk−1

(xk, yk−1)‖
= ‖DA(xk)>(yk − yk−1)‖ (see (7))
≤ λ′A‖yk − yk−1‖ (see (19))
= λ′Aσk‖A(xk)‖ (see Step 5 of Algorithm 1)

≤ 2λ′Aσk
νβk−1

(λ′f + λ′Aymax). (see (45)) (48)

By combining (47,48), we find that

dist(∇xLβk−1
(xk, yk), ∂g(xk))

≤ 2λ′Aσk
νβk−1

(λ′f + λ′Aymax) + εk. (49)

By combining (45,49), we find that

dist(−∇xLβk−1
(xk, yk), ∂g(xk)) + ‖A(xk)‖

≤
(

2λ′Aσk
νβk−1

(λ′f + λ′Aymax) + εk

)
+ 2

(
λ′f + λ′Aymax

νβk−1

)
. (50)

Applying σk ≤ σ1, we find that

dist(−∇xLβk−1
(xk, yk), ∂g(xk)) + ‖A(xk)‖

≤ 2λ′Aσ1 + 2

νβk−1
(λ′f + λ′Aymax) + εk. (51)
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For the second part of the theorem, we use the Weyl’s inequality and Step 5 of Algorithm 1 to write

λmin(∇xxLβk−1
(xk, yk−1)) ≥ λmin(∇xxLβk−1

(xk, yk))

− σk‖
m∑
i=1

Ai(xk)∇2Ai(xk)‖. (52)

The first term on the right-hand side is lower bounded by −εk−1 by Step 2 of Algorithm 1. We next bound the second term
on the right-hand side above as

σk‖
m∑
i=1

Ai(xk)∇2Ai(xk)‖

≤ σk
√
mmax

i
‖Ai(xk)‖‖∇2Ai(xk)‖

≤ σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1
,

where the last inequality is due to (5,45). Plugging into (52) gives

λmin(∇xxLβk−1
(xk, yk−1))

≥ −εk−1 − σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1
,

which completes the proof of Theorem 4.1.

B. Proof of Corollary 4.2
Let K denote the number of (outer) iterations of Algorithm 1 and let εf denote the desired accuracy of Algorithm 1, see (11).
Recalling Theorem 4.1, we can then write that

εf =
Q

βK
, (53)

or, equivalently, βK = Q/εf . We now count the number of total (inner) iterations T of Algorithm 1 to reach the accuracy εf .
From (17) and for sufficiently large k, recall that λβk

≤ λ′′βk is the smoothness parameter of the augmented Lagrangian.
Then, from (25) ad by summing over the outer iterations, we bound the total number of (inner) iterations of Algorithm 1 as

T =

K∑
k=1

O

(
λ2
βk−1

x2
max

εk

)

=

K∑
k=1

O
(
β3
k−1x

2
max

)
(Step 1 of Algorithm 1)

≤ O
(
Kβ3

K−1x
2
max

)
({βk}k is increasing)

≤ O

(
KQ3x2

max

ε3f

)
. (see (53)) (54)

In addition, if we specify βk = bk for all k, we can further refine T . Indeed,

βK = bK =⇒ K = logb

(
Q

εf

)
, (55)

which, after substituting into (54) gives the final bound in Corollary 4.2.

C. Proof of Lemma 2.1
Note that

Lβ(x, y) = f(x) +

m∑
i=1

yiAi(x) +
β

2

m∑
i=1

(Ai(x))2, (56)
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which implies that

∇xLβ(x, y)

= ∇f(x) +

m∑
i=1

yi∇Ai(x) +
β

2

m∑
i=1

Ai(x)∇Ai(x)

= ∇f(x) +DA(x)>y + βDA(x)>A(x), (57)

where DA(x) is the Jacobian of A at x. By taking another derivative with respect to x, we reach

∇2
xLβ(x, y) = ∇2f(x) +

m∑
i=1

(yi + βAi(x))∇2Ai(x)

+ β

m∑
i=1

∇Ai(x)∇Ai(x)>. (58)

It follows that

‖∇2
xLβ(x, y)‖

≤ ‖∇2f(x)‖+ max
i
‖∇2Ai(x)‖ (‖y‖1 + β‖A(x)‖1)

+ β

m∑
i=1

‖∇Ai(x)‖2

≤ λh +
√
mλA (‖y‖+ β‖A(x)‖) + β‖DA(x)‖2F . (59)

For every x such that ‖A(x)‖ ≤ ρ and ‖x‖ ≤ ρ′, we conclude that

‖∇2
xLβ(x, y)‖ ≤ λf +

√
mλA (‖y‖+ βρ)

+ β max
‖x‖≤ρ′

‖DA(x)‖2F , (60)

which completes the proof of Lemma 2.1.

D. Basis Pursuit
We only verify the regularity condition in (20) for (1) with f,A specified in (36). Note that

DA(x) = 2Bdiag(x),

where diag(x) ∈ R2d×2d is the diagonal matrix formed by x. The left-hand side of (20) then reads as

dist
(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)
= dist

(
−DA(xk)>A(xk), {0}

)
= ‖DA(xk)>A(xk)‖

= 2‖diag(xk)B
>

(Bx◦2k − b)‖. (61)

To bound the last line above, let x∗ be a solution of Program (1) and note that Bx◦2∗ = b by definition. Let also
zk, z∗ ∈ Rd denote the vectors corresponding to xk, x∗. Corresponding to xk, also define uk,1, uk,2 naturally and let
|zk| = u◦2k,1 + u◦2k,2 ∈ Rd be the amplitudes of zk. To simplify matters, let us assume also that B is full-rank. We then
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rewrite the last line of (61) as

‖diag(xk)B
>

(Bx◦2k − b)‖2

= ‖diag(xk)B
>
B(x◦2k − x◦2∗ )‖2

= ‖diag(xk)B
>
B(xk − x∗)‖2

= ‖diag(uk,1)B>B(xk − x∗)‖2

+ ‖diag(uk,2)B>B(xk − x∗)‖2

= ‖diag(u◦2k,1 + u◦2k,2)B>B(xk − x∗)‖2

= ‖diag(|zk|)B>B(xk − x∗)‖2

≥ ηn(Bdiag(|zk|))2‖B(xk − x∗)‖2

= ηn(Bdiag(|zk|))2‖Bxk − b‖2, (62)

where ηn(·) returns the nth largest singular value of its argument. We can therefore ensure that (20) holds by enforcing that

zk ∈
{
z ∈ Rd : ηn(Bdiag(|z|)) > ν

}
, (63)

for every iteration k.

Discussion The true potential of our reformulation is in dealing with more structured norms rather than `1, where
computing the proximal operator is often intractable. One such case is the latent group lasso norm (Obozinski et al., 2011),
defined as

‖z‖Ω =

I∑
i=1

‖zΩi‖,

where {Ωi}Ii=1 are (not necessarily disjoint) index sets of {1, · · · , d}. Although not studied here, we believe that the
non-convex framework presented in this paper can serve to solve more complicated problems, such as the latent group lasso.
We leave this research direction for future work.

E. Clustering
We only verify the condition in (20). Note that

A(x) = V V >1− 1, (64)

DA(x) =

 w1,1x
>
1 · · · w1,nx

>
1

...
wn,1x

>
n · · · wn,n1x>n


=
[
V · · · V

]
+

 x>1
. . .

x>n

 , (65)

where wi.i = 2 and wi,j = 1 for i 6= j. In the last line above, n copies of V appear and the last matrix above is
block-diagonal. For xk, define Vk as in the example and let xk,i be the ith row of Vk. Consequently,

DA(xk)>A(xk) =

 V >k (VkV
>
k − In)1
...

V >k (VkV
>
k − In)1


+

 xk,1(VkV
>
k 1− 1)1

...
xk,n(VkV

>
k 1− 1)n

 , (66)
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where In ∈ Rn×n is the identity matrix. Let us make a number of simplifying assumptions. First, we assume that
xk ∈ relint(C) so that ∂g(xk) = {0}, which can be easily enforced in the iterates. Second, we assume that Vk has nearly
orthonormal columns, namely, VkV >k ≈ In. This can also be easily enforced in each iterate of Algorithm 1 and naturally
corresponds to well-separated clusters. While a more fine-tuned argument can remove these assumptions, they will help us
simplify the derivations. Under these assumptions, the squared right-hand side of (20) becomes

dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)2

= dist
(
−DA(xk)>A(xk), {0}

)2
= ‖DA(xk)>A(xk)‖2

=

∥∥∥∥∥∥∥
xk,1(VkV

>
k 1− 1)1

...
xk,n(VkV

>
k 1− 1)n

∥∥∥∥∥∥∥
2

=

n∑
i=1

‖xk,i‖2(VkV
>
k 1− 1)2

i

≥ min
i
‖xk,i‖2 ·

n∑
i=1

(VkV
>
k 1− 1)2

i

= min
i
‖xk,i‖2 · ‖VkV >k 1− 1‖2. (67)

We can enforce the iterates to satisfy ‖xk,i‖ ≥ ν, which corresponds again to well-separated clusters, and guarantee (20).
In practice, often n exceeds the number of true clusters and a more fine-tuned analysis is required to establish (20) by
restricting the argument to a particular subspace of Rn.

F. `∞ denoising with a generative prior
The authors of (Ilyas et al., 2017) have proposed to project onto the range of a Generative Adversarial network (GAN)
(Goodfellow et al., 2014), as a way to defend against adversarial examples. For a given noisy observation x∗ + η, they
consider a projection in the `2 norm. We instead propose to use our augmented Lagrangian method to denoise in the `∞
norm, a much harder task:

min
x,z

‖x∗ + η − x‖∞
s.t. x = G(z).

(68)

We use a pretrained generator for the MNIST dataset, given by a standard deconvolutional neural network architecture. We
compare the succesful optimizer Adam against our method. Our algorithm involves two forward/backward passes through
the network, as oposed to Adam that requires only one. For this reason we let our algorithm run for 4000 iterations, and
Adam for 8000 iterations. For a particular example, we plot the objective value vs iteration count in figure F. Our method
successfully minimizes the objective value, while Adam does not succeed.
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Figure 4. Augmented Lagrangian vs Adam for `∞ denoising (left). `2 vs `∞ denoising as defense against adversarial examples




