Page MenuHomec4science

ADMM.tex
No OneTemporary

File Metadata

Created
Sun, Nov 10, 23:19

ADMM.tex

\section{Linearized Alternating Direction Method of Multipliers}
In convex optimization, whenever applicable, Alternating Direction Method of Multipliers (ADMM)
\cite{Glowinski1975,Gabay1976,Boyd2011} often outperforms the augmented Lagrangian method. In addition, ADMM often more efficiently handles non-smooth terms.
In light of the success of ADMM in convex optimization, in this section we develop and study a (linearized) ADMM variant of Algorithm~\ref{Algo:2}.
More specifically, consider the program
\begin{align}
\begin{cases}
\underset{x,z}{\min} \,\, f(x)+g(x)+h(z)+l(z)\\
A(x)+B(z) = 0,
\end{cases}
\label{eq:admm 2}
\end{align}
where $f,h:\RR^d\rightarrow\RR$ and $A,B:\RR^d\rightarrow\RR^d$ are smooth in the sense described later in this section.
%\begin{align*}
%\| \nabla f(x) - \nabla f(x') \| \le \lambda_f \|x-x'\|,
%\,\,
%\| \D A(x) - \D A(x') \| \le \lambda_A \|x-x'\|,
%\end{align*}
%\begin{align}
%\| \nabla h(z) - \nabla h(z') \| \le \lambda_h \|z-z'\|,
%\,\,
%\| \D B(z) - \D B(z') \| \le \lambda_B \|z-z'\|,
%\label{eq:smoothness basics admm}
%\end{align}
%for every $x,x',z,z'\in \RR^d$.
Above, $g,l:\RR^d\rightarrow\RR$ are proximal-friendly convex functions which might not be differentiable.
%For example, when $C,D\subset \RR^d$ and $g=1_C, l=1_D$ are the indicator functions on $C,D$, respectively, Program~\eqref{eq:admm 2} becomes
%\begin{align}
%\begin{cases}
%\underset{x,z}{\min} \,\, f(x)+h(z)\\
%A(x)+B(z) = 0\\
%x\in C,\qquad
%z\in D.
%\end{cases}
%\label{eq:admm 2}
%\end{align}
For penalty weight $\b\ge 0$, the augmented Lagrangian corresponding to problem~\eqref{eq:admm 2} is
\begin{align}
\L_{\b}(x,z,y) & = f(x)+h(z)
+ \langle A(x)+B(z),y \rangle + \frac{\b}{2}\| A(x)+B(z) \|^2,
\label{eq:lagrangian admm}
\end{align}
and problem \eqref{eq:admm 2} is therefore equivalent to the minimax program
\begin{align}
\underset{x,z}{\min} \underset{y}{\max}\,\, \L_\b(x,z,y).
\label{eq:admm main}
\end{align}
To solve the equivalent formulation in \eqref{eq:admm main}, we propose the linearized ADMM in Algorithm~\ref{Algo:3}. Most remarks about Algorithm~\ref{Algo:2} apply to Algorithm~\ref{Algo:3} as well and, in particular, note that Algorithm~\ref{Algo:3} performs two consecutive primal updates, one on $x$ and then one on $z$.
To parse the details of Algorithm~\ref{Algo:3}, we need to slightly change the gradient map in Definition~\ref{def:grad map} and the line search procedure in Lemma~\ref{lem:eval Lipsc cte} to match the new augmented Lagrangian $\L_\b$ in \eqref{eq:lagrangian admm}. More specifically, the corresponding gradient maps are defined as
\begin{equation}
G_{\b,\gamma}(x,z,y) = \frac{x-x^+}{\gamma},
\qquad
H_{\b,\iota}(x,z,y) = \frac{z-z^+}{\iota},
\label{eq:grad map admm}
\end{equation}
where
\begin{align}
x^+=P_{g}(x-\gamma \nabla_x \mathcal{L}_ {\beta}(x,z,y)),
\qquad
z^+=P_{l}(z-\iota \nabla_z \mathcal{L}_ {\beta}(x,z,y)),
\end{align}
and $\g,\iota>0$ are the primal step sizes. Above, $P_g$ and $P_l$ are the corresponding proximal operators.
The line search procedure too is similar to Lemma~\ref{lem:eval Lipsc cte} and we set
\begin{align*}
x^+_{\gamma'} = P_g(x - \gamma' \nabla_x \mathcal{L}_\beta(x,z,y)),
\end{align*}
\begin{align}
z^+_{\iota'} = P_l(z - \iota' \nabla_z \mathcal{L}_\beta(x,z,y)),
\end{align}
\begin{align}
\gamma & :=
\max \Big\{
\gamma' ={\gamma}_0 \theta^i :
\mathcal{L}_\beta (x^+_{\gamma'},z,y) \nonumber\\
& \qquad \qquad
\le \mathcal{L}_\beta (x,z,y) +
\left\langle x^+_{\gamma'} - x , \nabla_x \mathcal{L}_{\beta}(x,z,y) \right\rangle
+ \frac{1}{2\gamma'} \| x^+_{\gamma'} - x\|^2
\Big\},
\label{eq:line search x admm}
\end{align}
\begin{align}
\iota & :=
\max \Big\{
\iota' ={\iota}_0 \theta^i :
\mathcal{L}_\beta (x,z^+_{\iota'},y) \nonumber\\
& \qquad \qquad
\le \mathcal{L}_\beta (x,z,y) +
\left\langle z^+_{\iota'} - z , \nabla_z \mathcal{L}_{\beta}(x,z,y) \right\rangle
+ \frac{1}{2\iota'} \| z^+_{\iota'} - z\|^2
\Big\}.
\label{eq:defn of gamma line search admm}
\end{align}
The analysis of Algorithm~\ref{Algo:3} is similar to that of Algorithm~\ref{Algo:2}, involving also a similar version of Lemma~\ref{lem:bnd bnd Ak}. The convergence rate of Algorithm~\ref{Algo:3} is detailed below and proved in Appendix~\ref{sec:ADMM theory}. To present the result, let us introduce some additional notation. We let
\begin{align}
u=\left[
\begin{array}{cc}
x^\top z^\top
\end{array}
\right]^\top,
\qquad
p(u) = f(x)+h(z),
\nonumber\\
q(u) = g(x)+l(z),
\qquad
D(u) = A(x)+B(z),
\label{eq:new-notation-admm}
\end{align}
for short and assume that $p,D$ are smooth in the sense that
\begin{align}
\| \nabla p(u) - \nabla p(u') \| \le \lambda_p \|u-u'\|,
\nonumber\\
\| \D D(u) - \D D(u') \| \le \lambda_D \|u-u'\|,
\label{eq:smoothness basics admm}
\end{align}
for every $u,u'\in \RR^{2d}$.
\begin{algorithm}
\label{Algo:3}
Input: Parameters $\beta_1,\s_1,\rho,\tau> 0$, primal initialization $x_{1},z_1\in \RR^d$ with $\|A(x_1)+B(z_1)\|\le \rho$, dual initialization $y_1\in \RR^m$.
\\
For $k=1,2,\ldots$, execute\\
\begin{enumerate}
\item \textbf{(Update penalty weight)}
$
\beta_k \leftarrow \beta_{1} \sqrt{k} \log(k+1)/\log 2.
$
\item \textbf{(Line search in $x$)} Use the line search procedure in \eqref{eq:line search x admm} by replacing $x=x_k,z=z_k,y=y_k,\b=\b_k$ and let $\g_k \leftarrow \g$ be the output.\\
\item \textbf{(Descent step in $x$)} $ x_{k+1} \leftarrow P_{g }(x_{k} - \gamma_{k} \nabla_x \mathcal{L}_{\beta_{k}}(x_{k},z_k,y_{k}))$, where $\L_{\b_k}$ is the augmented Lagrangian and $P_g$ denotes the proximal operator, defined in (\ref{eq:Lagrangian},\ref{eq:defn of prox}), respectively.\\
\item \textbf{(Line search in $z$)} Use the line search procedure in \eqref{eq:defn of gamma line search} by replacing $x=x_{k+1},z=z_k,y=y_k,\b=\b_k$ and let $\iota_k \leftarrow \iota$ be the output.\\
\item \textbf{(Descent step in $z$)} $ z_{k+1} \leftarrow P_{l }(z_{k} - \iota_{k} \nabla_z \mathcal{L}_{\beta_{k}}(x_{k+1},z_k,y_{k}))$, where $P_l$ denotes the proximal operator for $l$.\\
%
%\item \textbf{(Control)} Properly modify $x_{k+1},z_{k+1}$ to ensure that $\|x_{k+1}\|,\|z_{k+1}\|\le \rho'$ or $\|x_{k+1}-x_k\|\le \rho''$.\\
\item \textbf{(Stopping criterion)} If $\g_k \|G_{\b_k,\g_k}(x_k,z_k,y_k)\|^2+ \iota_k \|G_{\b_k,\iota_k}(x_{k+1},z_k,y_k)\|^2 + \s_k \|A(x_k)+B(z_k)\|^2 \le \tau$, then quit and return $x_{k+1},z_{k+1}$.
% as approximate minimizers of Program \eqref{prob:01}.
See \eqref{eq:grad map admm} for the definition of the gradient mapping. \\
\item \textbf{(Update dual step size)}
$\s_{k+1} \leftarrow \s_{1} \min\left( {\frac{1}{\sqrt{k+1}}}, \frac{\|A(x_1)+B(z_1)\|}{|A(x_{k+1})+B(z_{k+1})\|}\cdot \frac{ \log^2 2 }{(k+1)\log^2(k+2)} \right).
$\\
\item \textbf{(Dual ascent step)} $y_{k+1} \leftarrow y_{k} + \sigma_{k+1}(A(x_{k+1})+B(z_{k+1}))$.
\end{enumerate}
\caption{Linearized ADMM for solving problem \eqref{eq:admm main}}
\end{algorithm}
%\begin{theorem}[Linearized ADMM]
%\label{thm:main admm}
%For a sufficiently large $k_0$, consider an integer interval $K=[k_0:k_1]$, and suppose that
%\begin{align}
% \inf_{k\ge k_0} f(x_k) + g(x_k)+ h(z_k) + l(z_k) + \langle A(x_k)+B(z_k) ,y_{k_0}\rangle
%>- \infty,
%\end{align}
%and that $\rho$ is large enough such that (\ref{eq:suff cnd on rho final}) holds . For $\rho'>0$, in addition to the strong smoothness of $f$ and $A$ quantified in (\ref{eq:smoothness basic}), let us define
%\begin{align}
%\lambda'_f = \max_{\|x\|\le \rho'} \|\nabla f(x)\|,
%\qquad
%\lambda'_A = \max_{\|x\| \le \rho'} \|DA(x)\|,
%\qquad
%\lambda'_B = \max_{\|x\|\le \rho'} \|DB(x)\|,
%\end{align}
%to be the (restricted) Lipschitz constants of $f,A,B$, respectively.
%Moreover, suppose that the nonconvex Slater's condition, namely, Lemma \ref{lem:bnd bnd Ak}, is in force, and
%\begin{align}
%\nu_A \ge 2\lambda_A \rho''.
%\end{align}
%Then the output of linearized ADMM in Algorithm~\ref{Algo:2} satisfies \textbf{we need a better expression below to better show the dependence on various parameters.}
%\begin{align}
%& \min_{k\in K}\,\, \min(\overline{\g},\overline{\iota})( \|G_k\|^2 + \|H_k\|^2) \sqrt{\frac{k_0 \log^2(k_0+1)}{k_1\log^2(k_1+1)}} \nonumber\\
%& \qquad + \|A(x_k)\|^2
%\lesssim \frac{1}{k_1-k_0},
%\end{align}
%where $\overline{\gamma},\overline{\iota}$ are independent of $k_1$ and $\lesssim$ suppresses the dependence on all parameters except $k_1$. The exact expressions in terms of $\lambda_f,\lambda'_f,\lambda_A,\lambda'_A, \b_{k_0},\s_{k_0}, \nu_A,y_0$ are found in (\ref{eq:raw bnd on sum admm},\ref{eq:lower_band_iotas_admm}).
%
%\end{theorem}
\begin{theorem}[Convergence rate of linearized ADMM]
\label{thm:main admm}
For sufficiently large integers $k_0< k_1$, consider the interval $K=[k_0:k_1]$,\footnote{The requirement for $k_0$ to be sufficiently large is merely to simplify the analysis. If desired, one can set $k_1=\infty$ in Theorem~\ref{thm:main admm}.} and consider the output sequence $\{x_k,z_k,y_k\}_{k\in K}$ of Algorithm~\ref{Algo:2} with $\kappa_k:= \min(\g_k,\iota_k)$ for short. After recalling (\ref{eq:new-notation-admm}), suppose that
\begin{align*}
\mu := - \min(0, \inf_{k} p(u_k) + q(u_k) + \langle D(u_k) ,y_{k_0}\rangle )
< \infty.
\end{align*}
For $\rho'>0$, in addition to the strong smoothness of $p$ and $D$ quantified in (\ref{eq:smoothness basics admm}), let us define
\begin{align}
\lambda'_p = \max_{\|u\|\le \rho'} \|\nabla p(x)\|,
\qquad
\lambda'_D = \max_{\|u\| \le \rho'} \|\D D(x)\|,
\end{align}
to be the (restricted) Lipschitz constants of $p$ and $D$, respectively.
Suppose also that problem~(\ref{eq:admm 2}) satisfies the geometric regularity in Definition~\ref{defn:nonconvex slater} with
\begin{align}
\nu(q,D,S,\rho,\rho') \gtrsim
\max\left(\lambda_D \max_{k\in K} \sqrt{\kappa_k\mu} , \frac{{\lambda'_p+\lambda'_D}}{\sqrt{\mu}} \right),
\label{eq:low-bnd-on-regularity-admm}
\end{align}
where
\begin{itemize}
\item $\rho \gtrsim \sqrt{\mu}$,
%\item $\rho \gtrsim -\sqrt{\mu}$,
\item $\rho'\ge \max_{k\in K} \|u_k\|$,
\item $S \supseteq \bigcup_{k\in K} P_{\cone(\partial q (u_{k+1}) )^*}\left( \D D(u_{k+1})^\top D(u_{k+1}) \right).$
\end{itemize}
Then the output sequence of Algorithm~\ref{Algo:2} satisfies
\begin{align}
\label{eq:rates-thm-admm}
& \min_{k\in K} \frac{1}{\lambda_p+ \sqrt{m} \lambda_D \rho + d \lambda'^2_D} \cdot \frac{\|G_{\b_K,\g_k}(x_k,y_k)\|^2
+ \|H_{\b_K,\iota_k}(z_k,y_k)\|^2
}{\sqrt{k_1}\log(k_1+1)} \nonumber\\
& + \|A(x_k)\|^2+\|B(z_k)\|^2
\lesssim \frac{1}{k_1-k_0}\left( \frac{\lambda_p'^2+\lambda_D'^2}{\nu(q,D,S,\rho,\rho')^2} + \mu\right),
\end{align}
where $\lesssim,\gtrsim$ above suppress the dependence on constants and less important parameters, for the sake of clarity.
%The exact expressions
%%in terms of $\lambda_f,\lambda'_f,\lambda_A,\lambda'_A, \b_{k_0},\s_{k_0},\rho, \rho', \nu(g,A,S,\rho,\rho'),y_0$
%are found in (\ref{eq:exact dependences},\ref{eq:suff cnd on nu-1},\ref{eq:cnd-on-nu-proof}).
\end{theorem}
\noindent Most of the remarks after Theorem \ref{thm:main} apply to Theorem~\ref{thm:main admm} too.
\section*{Acknowledgments}
AE is extremely grateful to Nadav Hallak for his thoughtful and constructive comments, which improved this manuscript.

Event Timeline